Effect of graphene nano-sheets additions on the density, hardness, conductivity, and corrosion behavior of Sn–0.7Cu solder alloy

  • Yang Lv
  • Wenchao YangEmail author
  • Jun Mao
  • Yitai Li
  • Xinjiang Zhang
  • Yongzhong ZhanEmail author


Graphene nano-sheets (GNSs) are considered a functional (excellent/good) material at solder alloy modification. In this study, GNSs were doped into Sn–0.7Cu solder by powder metallurgy to form Sn–0.7Cu–xGNSs (x = 0.025, 0.05, 0.075, 0.1 wt%) composite solders. The density, hardness, and electrical conductivity of the composite solders were investigated. At the same time, Potentiodynamic polarization method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were applied to analyze the electrochemical corrosion behavior of composite solders in the 3.5 wt% NaCl solution. The results revealed that as the content of GNSs increased, the hardness of composite solders decreased, but the density enhanced when compared with original Sn–0.7Cu. Simultaneously, the conductivity reached highest as the GNSs content was 0.025 wt%. Potentiodynamic polarization showed that GNSs affected the anodic reaction of the solders. The corrosion resistance of Sn–0.7Cu–0.075GNSs was better than that of other alloys. Sn3O(OH)2Cl2 and Tin oxides were the formation of the corrosion product by XPS and XRD analysis. SEM analysis confirmed that when the GNSs content was 0.075 wt%, the corrosion products were dense and the corrosion resistance of the alloy was improved.



This research work is supported by the National Key R&D Program of China (2016YFB0301400), the National Natural Science Foundation of China (51761002), the Guangxi Natural Science Foundation (2018GXNSFDA050008), the Training Plan of High-Level Talents of Guangxi University (2015) and open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials of Guangxi University of China (GXYSOF1809) and Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials (GXYSSF1807).


  1. 1.
    Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, J. Mater. Sci.: Mater. Electron. 23, 1108 (2012)Google Scholar
  2. 2.
    F. Wang, D. Li, S. Tian, Z. Zhang, J. Wang, C. Yan, Microelectron. Reliab. 73, 106 (2017). CrossRefGoogle Scholar
  3. 3.
    S. Annuar, R. Mahmoodian, M. Hamdi, K.N. Tu, Sci. Technol. Adv. Mater. 18, 693 (2017)CrossRefGoogle Scholar
  4. 4.
    C.C. Lee, R.C. Cheng, Y.M. Lin et al., Microelectron. Eng. 156, 30 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Shang, Y. Wang, Y. Wang, H. Ma, A. Kunwar, Microelectron. Eng. 208, 47 (2019). CrossRefGoogle Scholar
  6. 6.
    A.F. Abd El-Rehim, H.Y. Zahran, J. Alloys Compd. 695, 3666 (2017). CrossRefGoogle Scholar
  7. 7.
    T.-T. Chou, R.-W. Song, W.-Y. Chen, J.-G. Duh, Mater. Lett. 235, 180 (2019). CrossRefGoogle Scholar
  8. 8.
    I. Dutta, B.S. Majumdar, D. Pan, W.S. Horton, W. Wright, Z.X. Wang, J. Electron. Mater. 33, 258 (2004)CrossRefGoogle Scholar
  9. 9.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Mater. Sci. Eng. R: Rep. 44, 1 (2004). CrossRefGoogle Scholar
  10. 10.
    L. Xu, L. Wang, H. Jing, X. Liu, J. Wei, Y. Han, J. Alloys Compd. 650, 475 (2015)CrossRefGoogle Scholar
  11. 11.
    G. Zeng, S. Xue, Z. Liang, L. Gao, Cheminform 43, 565 (2012)Google Scholar
  12. 12.
    H.A. Jaffery, M.F.M. Sabri, S.M. Said et al., J. Alloys Compd. 810, 151925 (2019). CrossRefGoogle Scholar
  13. 13.
    H. Huang, G. Shuai, X. Wei, C. Yin, Microelectron. Reliab. 74, 15 (2017). CrossRefGoogle Scholar
  14. 14.
    F. Tai, F. Guo, Z-d Xia, Y-p Lei, Y-w Shi, Int. J. Miner. Metall. Mater. 16, 677 (2009). CrossRefGoogle Scholar
  15. 15.
    X.L. Zhong, M. Gupta, J. Phys. D Appl. Phys. 41, 095403 (2008). CrossRefGoogle Scholar
  16. 16.
    A.A. Eldaly, A.E. Hammad, Mater. Des. 40, 292 (2012)CrossRefGoogle Scholar
  17. 17.
    X. Hu, W. Chen, B. Wu, Mater. Sci. Eng. A 556, 816 (2012)CrossRefGoogle Scholar
  18. 18.
    T. Ventura, S. Terzi, M. Rappaz, A.K. Dahle, Acta Mater. 59, 1651 (2011)CrossRefGoogle Scholar
  19. 19.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007). CrossRefGoogle Scholar
  20. 20.
    S. Kim, P. Zhao, S. Aikawa, E. Einarsson, S. Chiashi, S. Maruyama, ACS Appl. Mater. Interfaces. 7, 9702 (2015)CrossRefGoogle Scholar
  21. 21.
    H.S. Song, S.L. Li, H. Miyazaki et al., Sci. Rep. 2, 337 (2012)CrossRefGoogle Scholar
  22. 22.
    J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, M. Khalid, Inamuddin, J. Ind. Eng. Chem. 66, 29 (2018). CrossRefGoogle Scholar
  23. 23.
    A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. (2019). CrossRefGoogle Scholar
  24. 24.
    L. Changgu, W. Xiaoding, J.W. Kysar, H. James, Science 321, 385 (2008)CrossRefGoogle Scholar
  25. 25.
    T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun, Z. Guo, Macromol. Chem. Phys. 212, 1951 (2011)CrossRefGoogle Scholar
  27. 27.
    Y. Li, J. Zhu, S. Wei et al., Macromol. Chem. Phys. 212, 2429 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Sun, M. Xiao, J. Liu, K. Gong, Eur. Polym. J. 42, 259 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, J. Am. Chem. Soc. 128, 7720 (2006)CrossRefGoogle Scholar
  30. 30.
    L. Xu, X. Chen, H. Jing, L. Wang, J. Wei, Y. Han, Mater. Sci. Eng. A 667, 87 (2016). CrossRefGoogle Scholar
  31. 31.
    S.M.L. Nai, J. Wei, M. Gupta, Thin Solid Films 504, 401 (2006)CrossRefGoogle Scholar
  32. 32.
    S. Xu, Y.C. Chan, K. Zhang, K. Yung, J. Alloys Compd. 595, 92 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Yan, D. Xie, Z. Chen et al., J. Nucl. Mater. 520, 1 (2019). CrossRefGoogle Scholar
  34. 34.
    D.J. Morgan, J. Electron Spectrosc. Relat. Phenom. 231, 109 (2019). CrossRefGoogle Scholar
  35. 35.
    W.F. Stickle, C.N. Young, J. Electron Spectrosc. Relat. Phenom. 231, 50 (2019). CrossRefGoogle Scholar
  36. 36.
    Y. Fan, L. Wang, J. Li et al., Carbon 48, 1743 (2010). CrossRefGoogle Scholar
  37. 37.
    C. Ramirez, L. Garzón, P. Miranzo, M.I. Osendi, C. Ocal, Carbon 49, 3873 (2011). CrossRefGoogle Scholar
  38. 38.
    K. Wang, Y. Wang, Z. Fan, J. Yan, T. Wei, Mater. Res. Bull. 46, 315 (2011). CrossRefGoogle Scholar
  39. 39.
    B. Liao, H. Cen, Z. Chen, X. Guo, Corros. Sci. 143, 347 (2018). CrossRefGoogle Scholar
  40. 40.
    M. Wang, J. Wang, W. Ke, Microelectron. Reliab. 73, 69 (2017). CrossRefGoogle Scholar
  41. 41.
    E. Chason, N. Jadhav, F. Pei, E. Buchovecky, A. Bower, Prog. Surf. Sci. 88, 103 (2013). CrossRefGoogle Scholar
  42. 42.
    T.-H. Chuang, C.-C. Chi, J. Alloys Compd. 480, 974 (2009). CrossRefGoogle Scholar
  43. 43.
    M. Sun, X. Long, M. Dong et al., Mater. Charact. 134, 354 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringGuangxi UniversityNanningPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured MaterialsNanningPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations