Advertisement

Effect of acceptor and donor dopants (Na, Y) on the microstructure and dielectric characteristics of high Curie point PZT-modified ceramics

  • Maria KhachebaEmail author
  • Noura Abdessalem
  • Ahmed Hamdi
  • Hamadi Khemakhem
Article
  • 19 Downloads

Abstract

This study describes the preparation of a solid solution of \({\text{Pb}}^{2 + } [({\text{Zr}}_{0.05}^{4 + } ,{\text{Ti}}_{0.95}^{4 + } )_{0.97} ({\text{Al}}_{1/3}^{3 + } ,{\text{Zn}}_{1/2}^{2 + } ,{\text{W}}_{1/3}^{6 + } )_{0.03} ]{\text{O}}_{3}\) (PZT) based on the mixed oxide method. A different amount of sodium carbonate and yttrium oxide (0.03 at.%, 0.06 at.%, and 0.1 at.%), where the ratio of Na:Y = 1:1 by mole, was added to PZT to investigate the effect of Na and Y co-doping. The ceramic samples were sintered and then subjected to phase identification, physical properties determination, and dielectric properties measurement. It was assumed that, by integrating into the lattice parameters, there is a substitution preference alternation of Y3+ for host cations in the perovskite lattice, while Na+ replaces the A-position of Pb2+ in the lattice. This resulted in more oxygen vacancy being generated in the lattice. PZT–xNY compositions exhibited an obvious anomaly in the temperature dependence of dielectric loss and dielectric permittivity below the phase transition temperature. In addition, it was found that doping of 0.1 at.% Na and Y resulted in a maximum dielectric constant (εc\(\sim 10,400\)) at Curie temperature (~ 749 K) with dissipation factor tan(δ)\(\sim 2.798\)%. Moreover, the diffusivity estimated using the modified Curie–Weiss law obtained at 1 kHz for all compositions showed that the material exhibits a diffuse-type phase.

Notes

Acknowledgements

The authors would like to thank Dr Elena Matei (National Institute of Materials Physics-Romania) for the technical assistance in SEM measurements and Dr Nabil Dhifallah (Laboratory of Multifunctional Materials and Applications-Tunisia) for carrying out the dielectric tests.

References

  1. 1.
    C.M. Landis, Non-linear constituve modeling of ferroelectrics. Curr. Opin. Solid State Mater. Sci. 8, 59–69 (2004)CrossRefGoogle Scholar
  2. 2.
    F. Kahoul, L. Hamzioui, N. Abdessalem et al., Synthesis and piezoelectric properties of Pb0.98Sm0.02[(ZrTi1-y)0.98](Fe, Nb)0.02]O3 ceramics. Mater. Sci. Appl. 3, 50–58 (2012)Google Scholar
  3. 3.
    S. Motlagh, A. Nasab, M. Rostami et al., Assessing the magnetic, cytotoxic and photocatalytic influence of incorporation Yb3+ or Pr3+ ions in cobalt-nickel ferrite. J. Mater. Sci. 30(7), 6902–6909 (2019)Google Scholar
  4. 4.
    M. Nasrabadi, M. Behpour, A. Nasab et al., ZnFe2-xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. 26(12), 9776–9781 (2015)Google Scholar
  5. 5.
    M. Nasrabadi, M. Behpour, A. Nasab et al., Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. 27(11), 11691–11697 (2016)Google Scholar
  6. 6.
    S. Asgarian, S. Pourmasoud, Z. Kargar et al., Investigation of positron annihilation lifetime and magnetic properties of Co1-xCuxFe2O4 nanoparticles. Mater. Res. Express. 6(1), 15–23 (2018)CrossRefGoogle Scholar
  7. 7.
    S. Hajra, P. Sharma, S. Sahoo et al., Processing and electrical properties of gallium-substituted lead zirconate titanate ceramics. Appl. Phys. A 123(12), 786–795 (2017)CrossRefGoogle Scholar
  8. 8.
    D. Dipti, J.K. Juneja, S. Singh et al., Enhancement in magnetoelectric coupling in PZT based composites. Ceram. Int. 41(4), 6108–6112 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Kour, P. Kumar, S.K. Sinha et al., Study of dielectric and impedance spectroscopy of La substituted nanocrystalline Pb(Zr0.52Ti0.48)O3. J. Mater. Sci. 26, 1304–1310 (2015)Google Scholar
  10. 10.
    E.R. Camargo, M.D. Gonçalves, M. Kakihana, The oxidant peroxide method (OPM) as a new alternative for the synthesis of lead-based and bismuth-based oxides. J. Mater. Res. 29, 131–138 (2014)CrossRefGoogle Scholar
  11. 11.
    E.R. Camargo, C.M. Barrado, C. Ribeiro et al., Nanosized lead lanthanum titanate (PLT) ceramic powders synthesized by the oxidant peroxo method. J. Alloy. Compd. 475, 817–821 (2009)CrossRefGoogle Scholar
  12. 12.
    L.P. Santos, E.R. Camargo, M.T. Fabbro et al., Wet chemical synthesis of magnesium niobate nanoparticles powders. Ceram. Int. 33, 1205–1209 (2007)CrossRefGoogle Scholar
  13. 13.
    J.M. Calderon-Moreno, E.R. Camargo, Electron microscopy studies on the formation and evolution of sodium niobate nanoparticles from a polymeric precursor. Catal. Today 78, 539–542 (2003)CrossRefGoogle Scholar
  14. 14.
    R. Samad, M. Rather, K. Asokan, Structural, dielectric and ferroelectric properties of rare earth substituted lead zirconate titanate. J. Mater. Sci. 29(5), 4226–4237 (2018)Google Scholar
  15. 15.
    M. Keshavarzi, H. Rahmani, A. Nemati et al., Conventional and two step sintering of PZT-PCN ceramics. Appl. Phys. A 124(2), 145–154 (2018)CrossRefGoogle Scholar
  16. 16.
    N. Kumari, S. Monga, M. Arif et al., Multifunctional behavior of acceptor-cation substitution at higher doping concentration in PZT ceramics. Ceram. Int. 45(10), 12716–12726 (2019)CrossRefGoogle Scholar
  17. 17.
    A. Limpichaipanit, A. Ngamjarurojana, Effect of Li and Bi co-doping and sintering temperature on dielectric properties of PLZT 9/65/35 ceramics. Ceram. Int. 43(5), 4450–4455 (2017)CrossRefGoogle Scholar
  18. 18.
    N. Abdessalem, A. Boutarfaia, Effect of composition on the electromechanical properties of Pb[ZrxTi(0.9–x)(Cr1/5, Zn1/5, Sb3/5)0.1]O3 ceramics. Ceram. Int. 33, 293–296 (2007)CrossRefGoogle Scholar
  19. 19.
    Z. Necira, A. Boutarfaia, N. Abdessalem et al., Phase structure, dielectric and piezoelectric properties of modified PZT ceramics near the morphotropic phase boundary. Int. J. Pharm. Chem. Biol. 4(3), 438–446 (2014)Google Scholar
  20. 20.
    D.K. Mahato, R.K. Chaudhary, S.C. Srivastava, Effect of Na on microstructure, dielectric and piezoelectric properties of PZT ceramic. J. Mater. Sci. Lett. 22(22), 1613–1615 (2003)CrossRefGoogle Scholar
  21. 21.
    H.R. Rukmini, R.N.P. Choudhary, V.V. Rao, Effect of doping pairs (La, Na) on structural and electrical properties of PZT ceramics. Mater. Chem. Phys. 55(2), 108–114 (1998)CrossRefGoogle Scholar
  22. 22.
    C. Li, M. Liu, Y. Zeng, D. Yu, Preparation and properties of yttrium-modified lead zirconate titanate ferroelectric thin films. Sens. Actuators A 58(3), 245–247 (1997)CrossRefGoogle Scholar
  23. 23.
    M.R. Benam, Investigation the dielectrical and electromechanical properties of PZT thin films. Int. J. Eng. Res. Appl. 3(2), 680–682 (2013)Google Scholar
  24. 24.
    J.S. Han, K.H. Chung, R. Bollina et al., Study of sintering behavior of PAN-PZT using dilatometry and co-relation with piezoelectric properties. Ceram. Int. 41(8), 9328–9336 (2015)CrossRefGoogle Scholar
  25. 25.
    X. Huang, W. Li, J. Zeng et al., The grain size effect in dielectric diffusion and electrical conduction. Physica B 560, 16–22 (2019).  https://doi.org/10.1016/j.physb.2019.02.007 CrossRefGoogle Scholar
  26. 26.
    L. Zhang, S. Jiang, B. Fan et al., Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3(Pb0.97La0.02) (Zr0.9Sn0.05Ti0.05)O3 anti–ferroelectric composite ceramics by Spark Plasma Sintering. J. Alloys Compd. 622, 162–165 (2014)CrossRefGoogle Scholar
  27. 27.
    T. Sreesattabud, B.J. Gibbons, A. Watcharapasorn et al., Effect of donor and acceptor dopants on fatigue properties in PZT thin films. Ceram. Int. 39(1), S521–S524 (2013)CrossRefGoogle Scholar
  28. 28.
    D. Bochenek, P. Niemiec, Microstructure and physical properties of the multicomponent PZT-type ceramics doped by calcium, sodium, bismuth and cadmium. Appl. Phys. A 124(11), 775–782 (2018)CrossRefGoogle Scholar
  29. 29.
    F. Gao, C.J. Wang, X.C. Liu et al., Effect of tungsten on the structure and piezoelectric properties of PZN-PZT ceramics. Ceram. Int. 33(6), 1019–1023 (2007)CrossRefGoogle Scholar
  30. 30.
    X. Luo, J. Zeng, X. Shi et al., Dielectric, ferroelectric and piezoelectric properties of MnO2-doped Pb(Yb1/2Nb1/2)O3-Pb(Zr, Ti)O3 ceramics. Ceram. Int. 44, 8456–8460 (2018)CrossRefGoogle Scholar
  31. 31.
    X. Huang, J. Peng, J. Zeng et al., The high piezoelectric properties and high temperature stability in Mn doped Pb(Mg0.5W0.5)O3-Pb(Zr, Ti)O3 ceramics. Ceram. Int. 45(5), 6523–6527 (2019)CrossRefGoogle Scholar
  32. 32.
    C.F. Tseng, Microwave dielectric properties of low loss microwave dielectric ceramics: a0.5Ti0.5NbO4 (A = Zn, Co). J. Eur. Ceram. Soc. 34, 3641–3648 (2014)CrossRefGoogle Scholar
  33. 33.
    A.R. James, R. Kumar, M. Premkumar et al., Chemical synthesis, structural, thermo-physical and electrical property characterization of PLZT ceramics. J. Alloys Compd. 496(2), 624–627 (2010)CrossRefGoogle Scholar
  34. 34.
    S.S. Chandratreya, R.M. Fulrath, J.A. Pask, Reaction mechanisms in the formation of PZT solid solutions. J. Am. Ceram. 64(7), 422–425 (1981)CrossRefGoogle Scholar
  35. 35.
    A. Mesquita, V.R. Mastelaro, A. Michalowicz, In situ X-ray diffraction studies of phase transition in Pb1-xla xZr0.40Ti0.60O3 ferroelectric ceramics. Phase Transit. 83(4), 251–262 (2010)CrossRefGoogle Scholar
  36. 36.
    H. Quek, M. Yan, Sol gel preparation and dielectric properties of lead iron niobate thin films. Ferroelctrics. 74, 95–108 (1987)CrossRefGoogle Scholar
  37. 37.
    R.F. Zhang, H.P. Zhang, J. Ma, Y.Z. Chen, T.S. Zhang, Effect of Y and Nb codoping on the microstructure and electrical properties of lead zirconate titanate ceramics. Solid State Ion. 166(2), 219–223 (2004)CrossRefGoogle Scholar
  38. 38.
    M. Hammer, M.J. Hoffmann, Sintering model for mixed-oxide-derived lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81(12), 3277–3284 (1998)CrossRefGoogle Scholar
  39. 39.
    T. Zhao, Q. Zhu, R. Xu et al., Effects of Ag2O doping on dielectric properties of (Pb0.96La0.04)(Zr0.9Ti0.1)0.99O3 antiferroelectric ceramics. Ceram. Int. 45(2), 1887–1892 (2019)CrossRefGoogle Scholar
  40. 40.
    A. Limpichaipanit, A. Ngamjarurojana, Effect of PbO/CuO addition to microstructure and electrical properties of PLZT 9/65/35. Ferroelectrics 486(1), 57–65 (2015)CrossRefGoogle Scholar
  41. 41.
    R. Rai, S. Sharma, N.C. Soni et al., Investigation of structural and dielectric properties of (La, Fe)-doped PZT ceramics. Physica B 382(1–2), 252–256 (2006).  https://doi.org/10.1016/j.physb.2006.02.024 CrossRefGoogle Scholar
  42. 42.
    Q.M. Zhang, H. Wang, N. Kim et al., Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl. Phys. 75(1), 454–459 (1994)CrossRefGoogle Scholar
  43. 43.
    B.K. Bammannavar, L.R. Naik, B.K. Chougule, Studies on dielectric and magnetic properties of (x)Ni0.2Co0.8Fe2O4 + (1-x)barium lead zirconate titanate magnetoelectric composites. J. Appl. Phys. 104(6), 064123–064130 (2008)CrossRefGoogle Scholar
  44. 44.
    P. Kumar, M. Kar, Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J. Alloys Compd. 584, 566–572 (2014)CrossRefGoogle Scholar
  45. 45.
    T.A. Babu, K.V. Ramesh, V.R. Reddy et al., Structural and dielectric studies of excessive Bi3+ containing perovskite PZT and pyrochlore biphasic ceramics. Mater. Sci. Eng. B 228, 175–182 (2018).  https://doi.org/10.1016/j.mseb.2017.11.023 CrossRefGoogle Scholar
  46. 46.
    F. Saouli, F.Z. Sriti, M. Abba et al., Structural and dielectric properties of (Bi) modified PLSZT ceramics. Annales de Chimie. Science des matériaux. 133(10), 635–639 (2018)Google Scholar
  47. 47.
    C. Ang, Z. Yu, L. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction. Phys. Rev. B 62(1), 228–236 (2000)CrossRefGoogle Scholar
  48. 48.
    T. Lamcharfi, N. Echatoui, S. Sayouri et al., Dielectric anomalies and relaxation behavior in hydrothermally processed PLZT ferroelectric ceramics. Smart Mater. Energy Commun. Secur. (2008).  https://doi.org/10.1007/978-1-4020-8796-7_14 CrossRefGoogle Scholar
  49. 49.
    A.K. Singh, X-ray diffraction and dielectric studies across morphotropic phase boundary in (1-X)[Pb(Mg0.5W0.5)O3]-xPbTiO3 ceramics. J. Alloys Compd. 509(16), 5167–5172 (2011)CrossRefGoogle Scholar
  50. 50.
    V. Koval, C. Alemany, J. Briančin, Dielectric properties and phase transition behavior of xPMN-(1-x)PZT ceramic systems. J. Electroceram. 10(1), 19–29 (2003)CrossRefGoogle Scholar
  51. 51.
    E. Perez-Delfin, J.E. García, D.A. Ochoa et al., Effect of Mn-acceptor dopant on dielectric and piezoelectric responses of lead lanthanum zirconate titanate piezoceramics. J. Appl. Phys. 110(3), 034106 (2011)CrossRefGoogle Scholar
  52. 52.
    H. Liu, R. Nie, Y. Yue et al., Effect of MnO2 doping on piezoelectric, dielectric and ferroelectric properties of PNN–PZT ceramics. Ceram. Int. 41(9), 11359–11364 (2015)CrossRefGoogle Scholar
  53. 53.
    J. Li, R. Duan, A. Song et al., Effects of Mn doping on the dielectric properties of (Pb, La, Sr)(Zr, Sn, Ti, Nb)O3 antiferroelectric ceramics. J. Mater. Sci. 29(18), 15926–15930 (2018)Google Scholar
  54. 54.
    J.A. Dean, Lange’s Handbook of Chemistry (J.F. Wei, Trans.) (Science Press, Beijing, 2003), pp. 4–31Google Scholar
  55. 55.
    K. Watanabe, H. Ohsato, H. Kishi et al., Solubility of La–Mg and La–Al in BaTiO3. Solid State Ion. 108, 129–135 (1998)CrossRefGoogle Scholar
  56. 56.
    T. Badapanda, S. Sarangi, B. Behera et al., Structural refinement, optical and electrical properties of [Ba1-x Sm2x/3](Zr0.05Ti0.95)O3 ceramics. J. Mater. Sci. 25(8), 3427–3439 (2014)Google Scholar
  57. 57.
    D. Shan, Y.F. Qu, J.J. Song, Dielectric properties and substitution preference of yttrium doped barium zirconium titanate ceramics. Solid State Commun. 141(2), 65–68 (2007)CrossRefGoogle Scholar
  58. 58.
    T. Badapanda, S.K. Rout, S. Panigrahi et al., Dielectric behavior of yttrium doped barium-zirconium-titanate ceramics. J. Korean Phys. Soc. 55, 749–753 (2009)CrossRefGoogle Scholar
  59. 59.
    R. Zachariasz, D. Bochenek, Modified PZT ceramics as a material that can be used in micromechatronics. Eur. Phys. J. B 88(11), 296–299 (2015)CrossRefGoogle Scholar
  60. 60.
    V. Kalem, M. Timucin, Structural, piezoelectric and dielectric properties of PSLZT–PMnN ceramics. J. Eur. Ceram. Soc. 33, 105–111 (2013)CrossRefGoogle Scholar
  61. 61.
    R. Nie, Q. Zhang, Y. Yue et al., Properties of low-temperature sintering PNN–PMW–PSN–PZT piezoelectric ceramics with Ba(Cu1/2W1/2)O3 sintering aids. Int. J. Appl. Ceram. 13(6), 1119–1124 (2016)CrossRefGoogle Scholar
  62. 62.
    K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition. Ferroelectr. Lett. 44, 55–61 (1982)CrossRefGoogle Scholar
  63. 63.
    N. Setter, L.E. Cross, The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. J. Appl. Phys. 51(8), 4356–4360 (1980)CrossRefGoogle Scholar
  64. 64.
    Z. Peng, D. Zheng, T. Zhou et al., Effects of Co2O3 doping on electrical properties and dielectric relaxation of PMS–PNN–PZT ceramics. J. Mater. Sci. 29(7), 5961–5968 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Applied ChemistryUniversity of Med KhiderBiskraAlgeria
  2. 2.Laboratory of Physical Chemistry of MaterialsUniversity of Amar TelidjiLaghouatAlgeria
  3. 3.Laboratory of Multifunctional Materials and ApplicationsUniversity of SfaxSfax, Sakiet EzziteTunisia

Personalised recommendations