Advertisement

Dielectric relaxation, electrical conductivity and optical studies of solid-state synthesized EuCrO3

  • L. BoudadEmail author
  • M. Taibi
  • A. Belayachi
  • M. Abd-Lefdil
Article
  • 27 Downloads

Abstract

The structural, morphological, dielectric, and optical properties of europium chromite EuCrO3 prepared by conventional solid-state reaction method were investigated. X-ray diffraction analysis revealed that the sample crystallizes in an orthorhombic structure with a grain size in the range of 0.255–1.127 μm as determined from scanning electron microscopy images. The dielectric response was investigated over a wide range of frequencies at several fixed high temperatures. The material was reported to exhibit a large dielectric constant interpreted by the heterogeneous electrical response of the material consisting of grains separated by poorly conducting grain boundaries as asserted by the mean of impedance spectroscopy, and the dielectric relaxation was explained in terms of Maxwell–Wagner relaxation mechanism. The conduction mechanism is reported to be dominated by the charge carriers hopping provided by both small and large polarons. Optical absorption studies indicate that the sample acquires a direct band gap with an energy of about 2.4 eV, suggesting its interest for potential application in optoelectronic devices.

Notes

References

  1. 1.
    M.I. Bichurin, V.M. Petrov, Low Temp. Phys. 36, 544 (2010)CrossRefGoogle Scholar
  2. 2.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)CrossRefGoogle Scholar
  3. 3.
    J.F. Scott, Nat. Mater. 6, 256–257 (2007)CrossRefGoogle Scholar
  4. 4.
    H. Béa, M. Gajek, M. Bibes, A. Barthélémy, J. Phys.: Condens. Matter 20, 434221 (2008)Google Scholar
  5. 5.
    V.S. Bhadram, B. Rajeswaran, A. Sundaresan, C. Narayana, EPL 101, 17008 (2013)CrossRefGoogle Scholar
  6. 6.
    N. Shamir, M. Melamud, H. Shaked, S. Shtrikman, Physica B+C 90, 217–222 (1977)CrossRefGoogle Scholar
  7. 7.
    Y. Su, J. Zhang, B. Li, B. Kang, Q. Yu, C. Jing, S. Cao, Ceram. Int. 38, S421–S424 (2012)CrossRefGoogle Scholar
  8. 8.
    H.B. Lal, R.D. Dwivedi, K. Gaur, J. Mater. Sci.: Mater. Electron. 1, 204–208 (1990)Google Scholar
  9. 9.
    J.M.M. Ramírez, H.V.S. Pessoni, A. Franco Jr., F.L.A. Machado, J. Alloys Compd. 690, 315–320 (2017)CrossRefGoogle Scholar
  10. 10.
    D. Deng, X. Wang, J. Zheng, X. Qian, D. Yu, D. Sun, C. Jing, B. Lu, B. Kang, S. Cao, J. Zhang, J. Magn. Magn. Mater. 395, 283–288 (2015)CrossRefGoogle Scholar
  11. 11.
    L.H. Yin, J. Yang, P. Tong, X. Luo, C.B. Park, K.W. Shin, W.H. Song, J.M. Dai, K.H. Kim, X.B. Zhu, Y.P. Sun, J. Mater. Chem. C 4, 11198–11204 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Kumar, I. Coondoo, M. Vasundhara, V.S. Puli, N. Panwar, Physica B 519, 69–75 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Lei, L. Liu, C. Wang, C. Wang, D. Guo, S. Zeng, B. Cheng, Y. Xiao, L. Zhou, J. Mater. Chem. A 1, 11982 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Taheri, F.S. Razavi, R.K. Kremer, Physica C 553, 8–12 (2018)CrossRefGoogle Scholar
  15. 15.
    A.K. Tripathi, H.B. Lal, J. Mater. Sci. 17, 1595–1609 (1982)CrossRefGoogle Scholar
  16. 16.
    Y. Bai, S.W. Wang, X. Zhang, Z.K. Zhao, Y.P. Shao, R. Yao, M.M. Yang, Y.B. Gao, Mater. Res. Express 6, 026101 (2019)CrossRefGoogle Scholar
  17. 17.
    D.R. Ratkovski, J.M.M. Ramírez, P.R.T. Ribeiro, H.V.S. Pessoni, A. Franco, F.L.A. Machado, J. Alloys Compd. 724, 501–506 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Taheri, F.S. Razavi, Z. Yamani, R. Flacau, P.G. Reuvekamp, A. Schulz, R.K. Kremer, Phys. Rev. B 93, 104414 (2016)CrossRefGoogle Scholar
  19. 19.
    G.S. Rao, C.N.R. Rao, Appl. Spectrosc. 24, 436–444 (1970)CrossRefGoogle Scholar
  20. 20.
    C.Y. Liang, E.J. Schimitschek, D.H. Stephens, J.A. Trias, J. Chem. Phys. 46, 1588–1593 (1967)CrossRefGoogle Scholar
  21. 21.
    A. Taitai, J.L. Lacout, J. Phys. Chem. Solids 48, 629–633 (1987)CrossRefGoogle Scholar
  22. 22.
    S. Vahur, A. Teearu, I. Leito, Spectrochim. Acta A 75, 1061–1072 (2010)CrossRefGoogle Scholar
  23. 23.
    F. Farzaneh, M. Najafi, J. Sci. 22, 329–333 (2011)Google Scholar
  24. 24.
    A.K. Jonscher, IEEE Trans. Electr. Insul. 27, 407–423 (1992)CrossRefGoogle Scholar
  25. 25.
    J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)CrossRefGoogle Scholar
  26. 26.
    A.K. Jonscher, J. Mater. Sci. 13, 553–562 (1978)CrossRefGoogle Scholar
  27. 27.
    K. Funke, J. Solid State Ion. 22, 111–195 (1993)Google Scholar
  28. 28.
    V.L. Mathe, K.K. Patankar, S.D. Lotke, P.B. Joshi, S.A. Patil, Bull. Mater. Sci. 25, 347–350 (2002)CrossRefGoogle Scholar
  29. 29.
    A. Peláiz-Barranco, M.P. Gutiérrez-Amador, A. Huanosta, R. Valenzuela, Appl. Phys. Lett. 73, 2039–2041 (1998)CrossRefGoogle Scholar
  30. 30.
    N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B 77, 014111 (2008)CrossRefGoogle Scholar
  31. 31.
    J. Daniels, K.H. Hardtl, Philips Res. Rep. 31, 489–504 (1976)Google Scholar
  32. 32.
    F.A. Kröger, H.J. Vink, Solid State Phys. 3, 307–435 (1956)CrossRefGoogle Scholar
  33. 33.
    J.B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet, Electrochim. Acta 51, 1473–1479 (2006)CrossRefGoogle Scholar
  34. 34.
    J. Tauc, Mater. Res. Bull. 3, 37–46 (1968)Google Scholar
  35. 35.
    V.S. Vavilov, Phys.-Uspekhi 37, 269 (1994)Google Scholar
  36. 36.
    K.D. Singh, R. Pandit, R. Kumar, Solid State Sci. 85, 70–75 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Physics and Chemistry of Inorganic and Organic Materials (LPCMIO), Materials Science Research Center, Ecole Normale SupérieureMohammed V University in RabatRabatMorocco
  2. 2.MANAPSE, Faculty of SciencesMohammed V University in RabatRabatMorocco

Personalised recommendations