Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21485–21494 | Cite as

Spray pyrolysis deposited CuSbS2 absorber layers for thin-film solar cells

  • Lei WanEmail author
  • Xu Guo
  • Yingcui Fang
  • Xiaoli Mao
  • Huier Guo
  • Jinzhang Xu
  • Ru ZhouEmail author
Article
  • 47 Downloads

Abstract

CuSbS2 thin films were fabricated by spray pyrolysis from metal chloride aqueous solutions, followed by a post-deposition sulfurization step. The structural, chemical, optical and electrical properties of CuSbS2 and the effect of various sulfurization temperatures on CuSbS2 thin film have been systematically studied. We used a two-step sulfurization method. Step 1 at lower temperature was to encourage complete saturation of the as-deposited film with sulfur vapor. And step 2 at higher temperature was to promote the formation and crystallization of CuSbS2. The sulfurization temperature of step 2 is very important for the formation of device-grade CuSbS2 films. With the increase in sulfurization temperature, impurities such as Sb2S3 decreased and the crystallinity of CuSbS2 improved. Until 400 °C, impurities disappeared and phase-pure well-crystallinity CuSbS2 thin films were obtained. When the sulfurization temperature is higher than 400 °C, CuSbS2 gradually changes to Cu3SbS4. The CuSbS2 films sulfurized at 400 °C with optimum band gap of 1.53 eV are p type, and absorption coefficient is larger than 105 cm−1 in the visible light wavelength range. The temperature dependence of electrical conductivity of CuSbS2 has been studied for the first time. At measurement temperatures higher than 140 K the electrical conductivity of the CuSbS2 film is dominated by band conduction and nearest neighbor hopping (NNH). However, at temperatures below 140 K the conduction is predominantly affected by variable range hopping (VRH). Finally, thin-film solar cells based on the sprayed CuSbS2 absorber layers with a maximum photoelectric conversion efficiency of 0.34% have been fabricated.

Notes

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. JZ2017HGTB0192), the National Natural Science Foundation of China (Nos. 51302057, 51602088), the Natural Science Foundation of Anhui Province (Nos. 1608085QE92, 1708085MA11) and the Hefei University of Technology 2018 Training Program of Innovation for Undergraduates (Nos. 2018CXCY092, 2018CXCY114).

References

  1. 1.
    F.W. de Souza Lucas, A. Zakutayev, APL Mater. 6, 084501 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Zhou, G.-Q. Bian, Q.-Y. Zhu, Y. Zhang, C.-Y. Li, J. Dai, J. Solid State Chem. 182, 259–264 (2009)CrossRefGoogle Scholar
  3. 3.
    A.C. Rastogi, N.R. Janardhana, Thin Solid Films 565, 285–292 (2014)CrossRefGoogle Scholar
  4. 4.
    T. Rath, A.J. MacLachlan, M.D. Brown, S.A. Haque, J. Mater. Chem. A 3, 24155–24162 (2015)CrossRefGoogle Scholar
  5. 5.
    I. Grigas, N.N. Mozgova, A. Orlyukas, V. Samulenis, Sov. Phys. Crystallogr. 20, 741–742 (1976)Google Scholar
  6. 6.
    A. Nagaoka, K. Yoshino, Growth of CZTS single crystals, in Copper Zinc Tin Sulfide-based Thin-film Solar Cells, ed. by K. Ito (Wiley, West Sussex, 2015), pp. 135–137Google Scholar
  7. 7.
    S. Adachi, Physical properties: compiled experimental data, in Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, ed. by K. Ito (Wiley, West Sussex, 2015), pp. 152–155Google Scholar
  8. 8.
    W. Septina, S. Ikeda, Y. Iga, T. Harada, M. Matsumura, Thin Solid Films 550, 700–704 (2014)CrossRefGoogle Scholar
  9. 9.
    A.W. Welch, L.L. Baranowski, P. Zawadzki, C. DeHart, S. Johnston, S. Lany, C.A. Wolden, A. Zakutayev, Prog. Photovoltaics Res. Appl. 24, 929–939 (2016)CrossRefGoogle Scholar
  10. 10.
    F.W. de Souza Lucas, A.W. Welch, L.L. Baranowski, P.C. Dippo, H. Hempel, T. Unold, R. Eichberger, B. Blank, U. Rau, L.H. Mascaro, A. Zakutayev, J. Phys. Chem. C 120, 18377–18385 (2016)CrossRefGoogle Scholar
  11. 11.
    A.D. Saragih, D.-H. Kuo, T.T.A. Tuan, J. Mater. Sci. 28, 2996–3003 (2017)Google Scholar
  12. 12.
    S. Banu, S.J. Ahn, S.K. Ahn, K. Yoon, A. Cho, Sol. Energy Mater. Sol. Cells 151, 14–23 (2016)CrossRefGoogle Scholar
  13. 13.
    B. Yang, L. Wang, J. Han, Y. Zhou, H. Song, S. Chen, J. Zhong, L. Lv, D. Niu, J. Tang, Chem. Mater. 26, 3135–3143 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Xu, Q. Ye, W. Chen, X. Pan, L. Hu, S. Yang, T. Hayat, A. Alsaedi, J. Zhu, S. Dai, J. Mater. Sci. 53, 2016–2025 (2018)CrossRefGoogle Scholar
  15. 15.
    L. Wan, C. Ma, K. Hu, R. Zhou, X. Mao, S. Pan, L.H. Wong, J. Xu, J. Alloys Compd. 680, 182–190 (2016)CrossRefGoogle Scholar
  16. 16.
    M.I. Medina-Montes, E. Campos-González, M. Morales-Luna, T.G. Sánchez, M. Becerril-Silva, S.A. Mayén-Hernández, F. de Moure-Flores, J. Santos-Cruz, Mater. Sci. Semicond. Process. 80, 74–84 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. Rodríguez-Lazcano, M.T.S. Nair, P.K. Nair, J. Electrochem. Soc. 152, G635 (2005)CrossRefGoogle Scholar
  18. 18.
    B. Krishnan, S. Shaji, R. Ernesto Ornelas, J. Mater. Sci. Mater. Electron. 26, 4770–4781 (2015)CrossRefGoogle Scholar
  19. 19.
    C. Macías, S. Lugo, Á. Benítez, I. López, B. Kharissov, A. Vázquez, Y. Peña, Mater. Res. Bull. 87, 161–166 (2017)CrossRefGoogle Scholar
  20. 20.
    V. Vinayakumar, S. Shaji, D. Avellaneda, T.K. Das Roy, G.A. Castillo, J.A.A. Martinez, B. Krishnan, Sol. Energy Mater. Sol. Cells 164, 19–27 (2017)CrossRefGoogle Scholar
  21. 21.
    S.C. Riha, A.A. Koegel, J.D. Emery, M.J. Pellin, A.B.F. Martinson, A.C.S. Appl, Mater. Interfaces 9, 4667–4673 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Liu, L. Chen, L. Nie, X. Wang, R. Yuan, Chalcogenide Lett. 11, 639–644 (2014)Google Scholar
  23. 23.
    I. Popovici, A. Duta, Int J Photoenergy. (2012).  https://doi.org/10.1155/2012/962649 CrossRefGoogle Scholar
  24. 24.
    C.J. Hibberd, E. Chassaing, W. Liu, D.B. Mitzi, D. Lincot, A.N. Tiwari, Prog. Photovoltaics Res. Appl. 18, 434–452 (2010)CrossRefGoogle Scholar
  25. 25.
    A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, D.G. Lidzey, Energy Environ. Sci. 7, 2944–2950 (2014)CrossRefGoogle Scholar
  26. 26.
    R. Zhou, Z. Yang, J. Xu, G. Cao, Coord. Chem. Rev. 374, 279–313 (2018)CrossRefGoogle Scholar
  27. 27.
    F. Aziz, A.F. Ismail, Mater. Sci. Semicond. Process. 39, 416–425 (2015)CrossRefGoogle Scholar
  28. 28.
    S.S. Chen, L. Brown, M. Levendorf, W.W. Cai, S.Y. Ju, J. Edgeworth, X.S. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J.Y. Kang, J. Park, R.S. Ruoff, ACS Nano 5, 1321–1327 (2011)CrossRefGoogle Scholar
  29. 29.
    R.E. Ornelas-Acosta, D. Avellaneda, S. Shaji, G.A. Castillo, T.K. Das Roy, B. Krishnan, J. Mater. Sci. Mater. Electron. 25, 4356–4362 (2014)CrossRefGoogle Scholar
  30. 30.
    G.H. Albuquerque, K.-J. Kim, J.I. Lopez, A. Devaraj, S. Manandhar, Y.-S. Liu, J. Guo, C.-H. Chang, G.S. Herman, J. Mater. Chem. A 6, 8682–8692 (2018)CrossRefGoogle Scholar
  31. 31.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247–5254 (1975)CrossRefGoogle Scholar
  32. 32.
    S.K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Sol. Energy 122, 508–516 (2015)CrossRefGoogle Scholar
  33. 33.
    F.W. de Souza Lucas, H. Peng, S. Johnston, P.C. Dippo, S. Lany, L.H. Mascaro, A. Zakutayev, J. Mater. Chem. A 5, 21986 (2017)CrossRefGoogle Scholar
  34. 34.
    J.C. Gonzalez, G.M. Ribeiro, E.R. Viana, P.A. Fernandes, P.M.P. Salome, K. Gutierrez, A. Abelenda, F.M. Matinaga, J.P. Leitao, A.F. da Cunha, J. Phys. D 46, 155107 (2013)CrossRefGoogle Scholar
  35. 35.
    D.K. Paul, S.S. Mitra, Phys. Rev. Lett. 31, 1000–1003 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical Engineering and AutomationHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.Department of Vacuum Science and TechnologyHefei University of TechnologyHefeiPeople’s Republic of China
  3. 3.School of Electronic Science and Applied PhysicsHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations