Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21465–21476 | Cite as

Growth of MoS2 nanoflakes and the photoelectric response properties of MoS2/TiO2 NRs compositions

  • Jianping XuEmail author
  • Yanyan Gao
  • Shaobo Shi
  • Lina Kong
  • Rui Cao
  • Jing Chen
  • Yichen Bu
  • Xiaosong Zhang
  • Lan LiEmail author


The initial reactant concentration and the substrate play an important role on the nucleation and growth of MoS2 nanostructures during hydrothermal growth. In this work, MoS2 nanoflakes are grown on FTO and TiO2 nanorod arrays (NRs) substrates. The morphology, optical and photoelectric properties of MoS2 nanoflakes are affected by the initial reactant concentration. Compared with the FTO substrate, MoS2 nanoflakes tend to grow on TiO2 NRs substrates due to less mismatch between TiO2 and MoS2. The large surface roughness and the presence of surface states of the TiO2 NRs facilitate the nucleation and growth of MoS2 nanoflakes. The photoelectric characteristics of MoS2/TiO2 NRs compositions have been investigated. The MoS2/TiO2 NRs compositions prepared using the initial reactant concentration with 4 mM S atom concentration exhibit the higher photoresponse behavior, which is attributed to the better heterojunction contact interface between MoS2 nanoflakes and TiO2 NRs. MoS2 nanoflakes can not completely cover the TiO2 NRs under low initial reactant concentration, resulting in the small area of the contact interface. On the other hand, MoS2 nanoflakes tend to form the self-assembly nanoflowers under high initial reactant concentration, which induces the carriers recombination in MoS2, the poor transport properties of MoS2 and the detrimental effects on the photogenerated current.



This work was financially supported in part by the National High Technology Research and Development Program of China (863 Program) (No. 2013AA014201), the National Key Foundation for Exploring Scientific Instrument of China (No. 2014YQ120351), the Natural Science Foundation of Tianjin (No.18JCYBJC86200), National Natural Science Foundation of China (Nos. 51871167, 51971158 and 51702235) and Scientific Developing Foundation of Tianjin Education Commission (No. 2017ZD14).


  1. 1.
    N. Huo, J. Kang, Z. Wei, S. Li, J. Li, S. Wei, Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 24, 7025–7031 (2014)CrossRefGoogle Scholar
  2. 2.
    M.M. Furchi, D.K. Polyushkin, A. Pospischil, T. Mueller, Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 14, 6165–6170 (2014)CrossRefGoogle Scholar
  3. 3.
    X. Zhu, X. Liang, X. Fan, X. Su, Fabrication of flower-like MoS2/TiO2 hybrid as an anode material for lithium ion batteries. RSC Adv. 7, 38119–38124 (2017)CrossRefGoogle Scholar
  4. 4.
    W. Zhou, Z. Yin, Y. Du, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9, 140–147 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Li, G. Lu, Z. Yin, Q. He, H. Li, Q. Zhang, H. Zhang, Optical identification of single- and few-layer MoS2 sheets. Small 8, 682–686 (2012)CrossRefGoogle Scholar
  6. 6.
    G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Sanne, R. Ghosh, A. Rai, M.N. Yogeesh, S.H. Shin, A. Sharma, K. Jarvis, L. Mathew, R. Rao, D. Akinwande, D. Banerjee, Radio frequency transistors and circuits based on CVD MoS2. Nano Lett. 15, 5039–5045 (2015)CrossRefGoogle Scholar
  8. 8.
    L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Hierarchical MoS2 nanosheet@TiO2 nanotube nrray composites with enhanced photocatalytic and photocurrent performances. Small 12, 1527–1536 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Chen, Y. Meng, J. Sha, C. Zhong, W. Hu, N. Zhao, Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale 10, 34–68 (2017)CrossRefGoogle Scholar
  10. 10.
    W. Shi, S. Song, H. Zhang, Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev. 42, 5714–5743 (2013)CrossRefGoogle Scholar
  11. 11.
    X. Xu, J. Hu, Z. Yin, C. Xu, Photoanode current of large-area MoS2 ultrathin nanosheets with vertically mesh-shaped structure on indium tin oxide. ACS Appl. Mater. Interfaces. 6, 5983–5987 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Ren, X. Qi, Y. Shen, S. Xiao, G. Xu, Z. Zhang, Z. Huang, J. Zhong, 2D co-catalytic MoS2 nanosheets embedded with 1D TiO2 nanoparticles for enhancing photocatalytic activity. J. Phys. D 49, 315304 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Han, C. Fan, G. Wu, H. Chen, M. Wang, Low-temperature solution processed utraviolet photodetector based on an ordered TiO2 nanorod array-polymer hybrid. J. Phys. Chem. C 115, 13438–13445 (2011)CrossRefGoogle Scholar
  14. 14.
    C. Lu, W. Liu, H. Li, B.K. Tay, A binder-free CNT network-MoS2 composite as a high performance anode material in lithium ion batteries. Chem. Commun. 50, 3338–3340 (2014)CrossRefGoogle Scholar
  15. 15.
    K. Chang, W. Chen, Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J. Mater. Chem. 21, 17175–17184 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Shen, Z. Yan, L. Yang, P. Du, J. Zhang, B. Xiang, MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chem. Commun. 50, 15447–15449 (2014)CrossRefGoogle Scholar
  17. 17.
    B. Guo, V. Yu, H. Fu, Q. Hua, R. Qi, H. Li, H. Song, S. Guo, Z. Zhu, Firework-shaped TiO2 microspheres embedded with few-layer MoS2 as an anode material for excellent performance lithium-ion batteries. J. Mater. Chem. A 3, 6392–6401 (2015)CrossRefGoogle Scholar
  18. 18.
    C.L. Jiao, S.R. Zhao, X.Q. Qiang, Y.F. Wei, The relationship of lattice mismatch the HgCdTe/CdZnTe with X-ray diffraction. Laser Infrared 37, 910–914 (2007)Google Scholar
  19. 19.
    R.N. Bhowmik, P. Mitra, R.J. Choudhury, V.R. Reddy, Substrate effect on the structural phase formation and magnetic properties. Appl Surf Sci 501, 144224 (2020)CrossRefGoogle Scholar
  20. 20.
    H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012)CrossRefGoogle Scholar
  21. 21.
    Y.X. Pi, Z. Li, D.Y. Xu, J.P. Liu, Y. Li, F.B. Zhang, G.L. Zhang, W.C. Peng, X.B. Fan, 1T-phase MoS2 nanosheets on TiO2 nanorod arrays: 3D photoanode with extraordinary catalytic performance. ACS Sustain. Chem. Eng. 5, 5175–5182 (2017)CrossRefGoogle Scholar
  22. 22.
    B. Chen, J. Sha, W. Li, E. Liu, C. Shi, C. He, J. Li, N. Zhao, Graphene oxide-assisted synthesis of micro-sized ultrathin single-crystalline anatase TiO2 nanosheets and their application in dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 8, 2495–2504 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Liu, Y.X. Yu, W.D. Zhang, MoS2/CdS heterojunction with high photoelectrochemical activity for H2 evolution under visible light: the role of MoS2. J. Phys. Chem. C 117, 12949–12957 (2013)CrossRefGoogle Scholar
  24. 24.
    B. Chen, E. Liu, T. Cao, F. He, C. Shi, C. He, L. Ma, Q. Li, J. Li, N. Zhao, Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: towards high-performance lithium-ion batteries anode materials. Nano. Energy. 33, 247–256 (2017)CrossRefGoogle Scholar
  25. 25.
    R. Coehoorn, C. Haas, Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 35, 6203–6206 (1987)CrossRefGoogle Scholar
  26. 26.
    N. Serpone, D. Lawless, R. Khairutdinov, Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J. Phys. Chem. 99, 16646–16654 (1995)CrossRefGoogle Scholar
  27. 27.
    Y. Gao, J. Xu, S. Shi, H. Dong, Y. Cheng, C. Wei, X. Zhang, S. Yin, L. Li, TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse. ACS Appl. Mater. Interfaces. 10, 11269–11279 (2018)CrossRefGoogle Scholar
  28. 28.
    M.T. Uddin, Y. Nicolas, C. Olivier, W. Jaegermann, N. Rockstroh, H. Junge, T. Toupance, Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production. Phys. Chem. Chem. Phys. 19, 19279–19288 (2017)CrossRefGoogle Scholar
  29. 29.
    Q.J. Xiang, J.G. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012)CrossRefGoogle Scholar
  30. 30.
    Y.Q. Wang, J.Y. Huang, H.T. Sun, Y.H. Ng, K.Q. Zhang, Y.K. Lai, MoS2 quantum dots@TiO2 nanotube arrays: an extended-spectrum-driven photocatalyst for solar hydrogen evolution. ChemSusChem 11, 1708–1721 (2018)CrossRefGoogle Scholar
  31. 31.
    C. Lee, J. Jie, L. Luo, M. Chen, Y. Tang, L. Luo, J. Jie, W. Zhang, S. Lee, Single-crystalline ZnTe nanowires for application as high-performance Green/Ultraviolet photodetector. Opt. Express 19, 6100–6108 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceTianjin University of TechnologyTianjinChina
  2. 2.School of Materials Science and Engineering, Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education and Tianjin Key Laboratory for Photoelectric Materials and DevicesTianjin University of TechnologyTianjinChina
  3. 3.School of ScienceTianjin University of Technology and EducationTianjinChina

Personalised recommendations