Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21454–21464 | Cite as

Intense red emission on dilute Mn-doped CaYAlO4-based ceramics obtained by laser floating zone

  • F. Rey-GarcíaEmail author
  • J. Rodrigues
  • T. Monteiro
  • F. M. Costa
Article
  • 19 Downloads

Abstract

The laser floating zone (LFZ) technique was used to produce polycrystalline fibers composed by P21/c monoclinic Y4Al2O9 (YAM) and \({\text{P}}\bar{4}21{\text{m}}\) tetragonal CaYAl3O7 (CYAM) phases embedded into I4/mmm tetragonal CaYAlO4 matrix. The scanning electron microscopy and X-ray diffraction patterns put in evidence the strong effect of growth rate on the microstructural and phases’ evolution. Besides the microstructural and structural analysis, complementary optical techniques as photoluminescence (PL), PL excitation (PLE), and lifetime measurements were used to characterize the produced fibers. The nonintentionally doped fibers were shown to exhibit an intense deep red emission likely due to Mn4+ trace impurities. From the PLE measurements, average crystal field strength was estimated with Dq/B ~ 2.94. Temperature-dependent PL measurements revealed that the red luminescence is due to the overlap of transitions from the almost electronic degenerate 2E and 4T2 excited states to the 4A2 ground state. The emission from the two excited states arises due to the breakdown of the adiabatic approximation. The overall luminescence intensity of the red emission was found to decrease from 11 K to RT, and the internal quantum efficiency, estimated from the ratio of the integrated luminescence at high and low temperatures, was found to be 60%. Time-resolved spectroscopy indicates a single decay time of ca. 2.0 ms at room temperature, corresponding to the spin and parity forbidden 2E → 4A2 transition.

Notes

Acknowledgements

This work is funded by FEDER funds (COMPETE 2020 Programme) and National Funds through FCT —Portuguese Foundation for Science and Technology (UID/CTM/50025/2019). F. Rey-García also acknowledges EU (Project SPRINT (EU H2020-FET-OPEN/0426)), Xunta de Galicia (ED431E 2018/08), and FCT (SFRH/BPD/108581/2015).

References

  1. 1.
    D. Singh, V. Tanwar, S. Bhagwan, I. Singh, Optical and non-linear optical materials, in Advanced Magnetic and Optical Materials, ed. by A. Tiwari, P.K. Iyer, V. Kumar, H. Swart (Wiley, Hoboken, 2016), p. 317Google Scholar
  2. 2.
    D. Singh, V. Tanwar, A.P. Samantilleke, B. Marí, S. Bhagwan, P.S. Kadyan, I. Singh, J. Mater. Sci. 45(6), 2718 (2016)Google Scholar
  3. 3.
    A.G. Bispo Jr., S.A.M. Lima, L.D. Carlos, R.A.S. Ferreira, A.M. Pires, ECS J. Solid State Sci. Technol. 9, 016008 (2020)Google Scholar
  4. 4.
    S. Adachi, ECS J. Solid State Sci. Technol. 9, 016001 (2020)Google Scholar
  5. 5.
    J.M. Phillips, M.E. Coltrin, M.H. Crawford, A.J. Fischer, M.R. Krames, R. Mueller-Mach, G.O. Mueller, Y. Ohno, L.E.S. Rohwer, J.A. Simmons, J.Y. Tsao, Laser Photonics Rev. 1(4), 307 (2007)Google Scholar
  6. 6.
    J.Y. Tsao, M.E. Coltrin, M.H. Crawford, J.A. Simmons, Proc. IEEE 98(7), 1162 (2010)Google Scholar
  7. 7.
    R. Cao, Y. Ye, Q. Peng, G. Zheng, H. Ao, J. Fu, Y. Guo, B. Guo, Dyes Pigments 146, 14 (2017)Google Scholar
  8. 8.
    J. Rodrigues, S.M.C. Miranda, N.F. Santos, A.J. Neves, E. Alves, K. Lorenz, T. Monteiro, Mater. Chem. Phys. 134(2–3), 716 (2012)Google Scholar
  9. 9.
    Y. Chen, M. Wang, J. Wang, M. Wu, C. Wang, J. Solid State Lighting 1, 15 (2014)Google Scholar
  10. 10.
    J. Rodrigues, N. Ben Sedrine, M. Felizardo, M.J. Soares, E. Alves, A.J. Neves, V. Fellmann, G. Tourbot, T. Auzelle, B. Daudin, M. Bockowski, K. Lorenz, T. Monteiro, RSC Adv. 4(108), 62869 (2014)Google Scholar
  11. 11.
    M.R.N. Soares, T. Holz, F. Oliveira, T. Monteiro, RSC Adv. 5(26), 20138 (2015)Google Scholar
  12. 12.
    M.G. Brik, A.M. Srivastava, J. Lumin. 133, 69 (2013)Google Scholar
  13. 13.
    Y. Zhou, Q. Zhou, Y. Liu, Z. Wang, H. Yang, Q. Wang, Mater. Res. Bull. 73, 14 (2016)Google Scholar
  14. 14.
    R. Cao, W. Wang, J. Zhang, S. Jiang, Z. Chen, W. Li, X. Yu, J. Alloys Compd. 704, 124 (2017)Google Scholar
  15. 15.
    X. Huang, H. Guo, Dyes Pigments 152, 36 (2018)Google Scholar
  16. 16.
    X. Huang, J. Liang, B. Li, L. Sun, J. Lin, Opt. Lett. 43, 3305 (2018)Google Scholar
  17. 17.
    K. Sankarasubramanian, B. Devakumar, G. Annadurai, L. Sun, Y.J. Zeng, X. Huang, RSC Adv. 8, 30223 (2018)Google Scholar
  18. 18.
    Q. Sun, S. Wang, B. Li, H. Guo, X. Huang, J. Lumin. 203, 371 (2018)Google Scholar
  19. 19.
    L. Shi, Y. Han, Z. Ji, Z. Li, H. Li, J. Zhang, Z. Zhang, J. Mater. Sci. 30, 15504 (2019)Google Scholar
  20. 20.
    Q. Sun, S. Wang, B. Devakumar, L. Sun, J. Liang, X. Huang, ACS Omega 4, 13474 (2019)Google Scholar
  21. 21.
    S. Kadyan, D. Singh, J. Mater. Sci. 29, 17277 (2018)Google Scholar
  22. 22.
    D. Singh, V. Tanwar, A.P. Simantilke, B. Marí, P.S. Kadyan, I. Singh, Adv. Mater. Lett. 7, 47 (2016)Google Scholar
  23. 23.
    D. Singh, V. Tanwar, A. Samantilke, P.S. Kadyan, I. Singh, J. Mater. Sci. 26, 9977 (2015)Google Scholar
  24. 24.
    M. Yamaga, T. Yosida, Y. Inoue, N. Kodama, B. Henderson, Radiat. Eff. Defect 136, 33 (1995)Google Scholar
  25. 25.
    D. Geng, G. Li, M. Shang, C. Peng, Y. Zhang, Z. Cheng, J. Li, Dalton Trans. 41, 3078 (2012)Google Scholar
  26. 26.
    A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, B. Moine, J. Appl. Phys. 111, 043104 (2012)Google Scholar
  27. 27.
    Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, J. Lin, A.C.S. Appl, Mater. Interfaces 7, 2715 (2015)Google Scholar
  28. 28.
    W. Wang, X. Yan, X. Wu, Z. Zhang, B. Hu, J. Zhou, J. Cryst. Growth 219, 56 (2000)Google Scholar
  29. 29.
    P.O. Petit, J. Petit, Ph Goldner, B. Viana, Opt. Mater. 30, 1093 (2008)Google Scholar
  30. 30.
    T. Stoyanova-Lyubenova, J.B. Carda, M. Ocaña, J. Eur. Ceram. Soc. 29, 2193 (2009)Google Scholar
  31. 31.
    A. Yamaji, A. Suzuki, Y. Shoji, S. Kurosawa, J. Pejchal, K. Kamada, Y. Yokota, A. Yoshikawa, J. Cryst. Growth 393, 138 (2014)Google Scholar
  32. 32.
    A. Ueda, M. Higuchi, D. Yamada, S. Namiki, T. Ogawa, S. Wada, K. Tadanaga, J. Cryst. Growth 404, 152 (2014)Google Scholar
  33. 33.
    F. Rey-García, N. Ben Sedrine, M.R. Soares, A.J.S. Fernandes, A.B. Lopes, N. Ferreira, T. Monteiro, F.M. Costa, Opt. Mater. Express 7, 868 (2017)Google Scholar
  34. 34.
    F. Rey-García, J. Rodrigues, A.J.S. Fernandes, M.R. Soares, T. Monteiro, F.M. Costa, CrystEngComm 20, 7386 (2018)Google Scholar
  35. 35.
    F. Rey-García, A.J.S. Fernandes, F.M. Costa, Mater. Res. Bull. 112, 413 (2019)Google Scholar
  36. 36.
    M.R.B. Andreeta, A.C. Hernandes, in Springer Handbook of Crystal Growth, ed. by G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley (Springer, Berlin, 2010), p. 393Google Scholar
  37. 37.
    R.G. Carvalho, A.J.S. Fernandes, F.J. Oliveira, E. Alves, N. Franco, C. Louro, R.F. Silva, F.M. Costa, J. Eur. Ceram. Soc. 30, 3311 (2010)Google Scholar
  38. 38.
    I. de Francisco, R.I. Merino, V.M. Orera, A. Larrea, J.I. Peña, J. Eur. Ceram. Soc. 25, 1341 (2005)Google Scholar
  39. 39.
    N.F. Santos, A.J.S. Fernandes, L.C. Alves, N.A. Sobolev, E. Alves, K. Lorenz, F.M. Costa, T. Monteiro, Nucl. Instr. Meth. Phys. Res. B 306, 195 (2013)Google Scholar
  40. 40.
    R.V. Perrella, C.S. Nascimento Júnior, M.S. Góes, E. Percoraro, M.A. Schiavon, C.O. Paiva-Santos, H. Lima, M.A. Couto dos Santos, S.J.L. Ribeiro, J.L. Ferrari, Opt. Mater. 57, 45 (2016)Google Scholar
  41. 41.
    J.M. Vieira, R.A. Silva, R.F. Silva, F.M. Costa, Appl. Surf. Sci. 258, 9175 (2012)Google Scholar
  42. 42.
    F. Carrasco, R.A. Silva, N.J.O. Silva, R.F. Silva, J.M. Vieira, F.M. Costa, Appl. Surf. Sci. 255, 5503 (2009)Google Scholar
  43. 43.
    F. Amaral, L.C. Costa, M.A. Valente, A.J.S. Fernandes, N. Franco, E. Alves, F.M. Costa, Acta Mater. 59, 102 (2011)Google Scholar
  44. 44.
    J.Y. Pastor, J. Llorca, P. Poza, I. de Francisco, R.I. Merino, J.I. Peña, J. Eur. Ceram. Soc. 25, 1215 (2005)Google Scholar
  45. 45.
    R.G. Carvalho, F.J. Oliveira, R.F. Silva, F.M. Costa, Mater. Des. 61, 211 (2014)Google Scholar
  46. 46.
    R.G. Carvalho, F.M. Figueiredo, A.J.S. Fernandes, R.F. Silva, F.M. Costa, Sci. Adv. Mater. 5(12), 1847 (2013)Google Scholar
  47. 47.
    F. Rey-García, N. Ben Sedrine, A.J.S. Fernandes, T. Monteiro, F.M. Costa, J. Eur. Ceram. Soc. 38, 2059 (2018)Google Scholar
  48. 48.
    International Centre for Diffraction Data (2019). http://icdd.com. Accessed 9 Oct 2019
  49. 49.
    A. Richter, M. Göbbels, J. Phase Equilib. Diffus. 31, 157 (2010)Google Scholar
  50. 50.
    L.B. McCusker, R.B. Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Cryst. 32, 36 (1999)Google Scholar
  51. 51.
    E. Guilmeau, D. Chateigner, J. Noudem, R. Funahashi, S. Horii, B. Ouladdiaf, J. Appl. Cryst. 38, 199 (2005)Google Scholar
  52. 52.
    Y.P. Udalov, Z.S. Appen, V.V. Parshina, Russ. J. Inorg. Chem. 24, 1549 (1979)Google Scholar
  53. 53.
    W.M. Yen, M.J. Weber, Inorganic phosphors: compositions, preparation and optical properties (CRC Press, Boca Ratón, 2004)Google Scholar
  54. 54.
    F.M. Costa, R.F. Silva, J.M. Vieira, Supercond. Sci. Technol. 14(11), 910 (2001)Google Scholar
  55. 55.
    M.F. Carrasco, R.F. Silva, J.M. Vieira, F.M. Costa, Supercond. Sci. Technol. 22, 065016 (2009)Google Scholar
  56. 56.
    F.M. Costa, M.F. Carrasco, R.F. Silva, J.M. Vieira, Superc. Sci. Technol. 16(3), 392 (2003)Google Scholar
  57. 57.
    P. Rudolph, Handbook of Crystal Growth (Elsevier, Boston, 2015), p. 281Google Scholar
  58. 58.
    The Effects of Impurities on Lime Quality—Featured Industry (PEC Consulting Group, 2019). http://pecconsultinggroup.com/2014/07/22/. Accessed 9 Oct 2019
  59. 59.
    A. Selot, J. Tripathi, S. Tripathi, M. Aynyas, Lumin. J. Biol. Chem. Lumin. 29, 362 (2014)Google Scholar
  60. 60.
    P. Pathak, A. Selot, R. Kurchania, Radiat. Phys. Chem. 99, 26 (2014)Google Scholar
  61. 61.
    T. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954)Google Scholar
  62. 62.
    B. Struve, G. Huber, Appl. Phys. B 36, 195 (1985)Google Scholar
  63. 63.
    W.H. Fonger, C.W. Struck, Phys. Rev. B 11, 3251 (1975)Google Scholar
  64. 64.
    M. Yamaga, B. Henderson, K.P. O’Donnell, Phys. Rev. B 46, 3273 (1992)Google Scholar
  65. 65.
    A.A. Kaminskii, X. Xu, O. Lux, H. Rhee, H.J. Eichler, J. Zhang, D. Zhou, A. Shrikawa, K. Ueda, J. Xu, Laser Phys. Lett. 9, 306 (2012)Google Scholar
  66. 66.
    J.P. Hehir, M.O. Henry, J.P. Larkin, G.F. Imbusch, J. Phys. C. 7, 2241 (1974)Google Scholar
  67. 67.
    M. Yamaga, B. Henderson, K.P. O’Donnell, C. Trager Cowan, A. Marshall, Appl. Phys. B 50, 425 (1990)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Física & I3NUniversidade de AveiroAveiroPortugal
  2. 2.Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de ZaragozaSaragossaSpain
  3. 3.UA Microóptica & Óptica GRIN, Facultade de Óptica e OptometríaUniversidade Santiago CompostelaSantiago de CompostelaSpain

Personalised recommendations