Fabrication and characterization of an organic light-emitting diode based on Langmuir–Blodgett films using oligo(phenylenevinylene) derivatives

  • Gabriela Alejandra Sosa-Ortiz
  • Violeta Álvarez-Venicio
  • Jaime Octavio Guerra-Pulido
  • Víctor Manuel Velazquez-Aguilar
  • Vladimir A. Basiuk
  • María del Pilar Carreón-CastroEmail author


We present the characterization of oligo(phenylenevinylene) derivatives which contain dendrons of first to third generations with terminal chains of C12H25 and C3H7, then, Langmuir–Blodgett and spin coating films of this compounds were used to make an OLED. To make the films, some previous studies were performed such as the isotherms, the Brewster Angle Microscopy and hysteresis to find which compound forms the most suitable monolayer at the water–air interface so that it can be transferred to an ITO-glass substrate through the Langmuir–Blodgett (LB) technique. Until 30 LB films were transferred to ITO and, then, a metallic electrode was deposited over the film to apply a voltage between ITO and this metallic electrode. As a result, a green–yellow organic light-emitting diode was obtained and it was characterized through UV–Vis spectroscopy, photoluminescence, electroluminescence, lifetime and we compared its performance with other OLED fabricated through the spin coating technique. We concluded that the LB OLED has a lower driving voltage and its lifetime is almost the same for both. In addition, we have calculated through density functional theory the band gaps for the six compounds presented here and we observed that all the six dendrons have band gaps of approximately 2 eV.



The authors acknowledge to DGAPA-UNAM for financial support through PAPIIT IN-206018 and IN-116716. G.A. Sosa-Ortiz acknowledges the economic support provided by the CONACyT during her doctoral studies through the scholarship 429387. V. Alvarez-Venicio acknowledges CONACyT for the cathedra 411-2016. The authors would like to express their gratitude to Martín Cruz-Villafañe (ICN-UNAM) for the technical support provided.


  1. 1.
    J.H. Burroughes, D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990)CrossRefGoogle Scholar
  2. 2.
    R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos-Santos, J.L. Brédas, M. Lögdlund, W.R. Salaneck, Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999)CrossRefGoogle Scholar
  3. 3.
    K. Saxena, V.K. Jain, D.S. Mehta, A review on the light extraction techniques in organic electroluminescent devices. Opt. Mater. 32, 221–233 (2009)CrossRefGoogle Scholar
  4. 4.
    A.R. Brown, D.C. Bradley, J.H. Burroughes, N.C. Friend, N.C. Greenham, P.L. Burn, A.B. Holmes, A. Kraft, Poly(p-phenylenevinylene) lightemitting diodes: enhanced electroluminescent efficiency through charge carrier confinement. Appl. Phys. Lett. 61, 2793–2795 (1992)CrossRefGoogle Scholar
  5. 5.
    B. Geffroy, P. Le-Roi, C. Prat, Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006)CrossRefGoogle Scholar
  6. 6.
    Z. Shen, P.E. Burrows, V. Bulovic, S.R. Forrest, M.E. Thompson, Three-color, tunable, organic light-emitting devices. Science 276(5321), 2009–2011 (1997)CrossRefGoogle Scholar
  7. 7.
    L.S. Hung, C.W. Tang, M.G. Mason, P. Raychaudhuri, J. Madathil, Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes. Appl. Phys. Lett. 78, 544–546 (2001)CrossRefGoogle Scholar
  8. 8.
    F. He, L. Tian, W. Xie, M. Li, Q. Gao, M. Hanif, Y. Zhang, G. Cheng, B. Yang, Y. Ma, S. Liu, J. Shen, Efficient blue organic light-emmitting devices based on improved Guest/Host combination. J. Phys. Chem. C 112, 12024–12029 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Lee, J.-I. Lee, H.Y. Chu, Investigation of double emissive layer structures on phosphorescent blue organic light-emitting diodes. Synth. Met. 159(14), 1460–1463 (2009)CrossRefGoogle Scholar
  10. 10.
    W. Gaynor, S. Hofmann, M.G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M.D. McGehee, M.C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, K. Leo, Color in the corners: ITO-free white OLEDs with angular color stability. Adv. Mater. 25, 4006–4013 (2013)CrossRefGoogle Scholar
  11. 11.
    Y. Yumoto, S. Yoshimura, Synthesis and electrical properties of a new conducting polythiophene prepared by electrochemical polymerization of α-terthienyl. Synth. Met. 13, 191–195 (2003)Google Scholar
  12. 12.
    Z.-K. Chen, N.H. Sim-Lee, W. Huang, New phenyl-substituted PPV derivatives for polymer light-emitting diodes − synthesis, characterization and structure − property relationship study. Macromolecules 36(4), 1009–1020 (2003)CrossRefGoogle Scholar
  13. 13.
    N. Vilbrandt, A. Gassmann, H. von Seggern, M. Rehahn, Blue-greenish electroluminescent poly(p-phenylenevinylene) developed for organic light-emitting diode applications. Macromolecules 49, 1674–1680 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Aikawa, M. Sumita, Y. Shimodo, K. Morihashi, Theoretical studies of molecular orientation and charge recombination in poly-paraphenylenevinylene light-emitting diodes. Phys. Chem. Chem. Phys. 17, 20923–20931 (2015)CrossRefGoogle Scholar
  15. 15.
    V.K. Praveen, C. Ranjith, E. Bandini, A. Ajayaghosh, N. Armaroli, Oligo(phenylenevinylene) hybrids and self-assemblies: versatile materials for excitation energy transfer. Chem. Soc. Rev. 43, 4222–4242 (2014)CrossRefGoogle Scholar
  16. 16.
    J. De, S. Prasad-Gupta, S. Sudheendran-Swayamprabha, D. Kumar-Dubey, I. Bala, I. Sarkar, G. Dey, J.H. Jou, S. Ghosh, S. Kumar-Pal, Blue luminescent organic light emitting diode devices of a new class of star-shaped columnar mesogens exhibiting π-π driven supergelation. J. Phys. Chem. C 122, 23659–23674 (2018)CrossRefGoogle Scholar
  17. 17.
    C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913–915 (1987)CrossRefGoogle Scholar
  18. 18.
    P.E. Burrows, V. Bulovic, G. Gu, V. Kozolov, S.R. Forrest, M.E. Thompson, Light emitting devices using vacuum deposited organic thin films. Thin Solid Films 331, 101–105 (1998)CrossRefGoogle Scholar
  19. 19.
    J. Cui, Q. Huang, Q. Wang, T.J. Marks, Nanoscale covalent self-assembly approach to enhancing anode/hole-transport layer interfacial stability and charge injection efficiency in organic light-emitting diodes. Langmuir 17(7), 2051–2054 (2001)CrossRefGoogle Scholar
  20. 20.
    J. Kido, K. Hongawa, K. Okuyama, K. Nagai, White light-emitting organic electroluminescent devices using te poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl. Phys. Lett. 64, 815–817 (1994)CrossRefGoogle Scholar
  21. 21.
    C. Väterlein, H. Neureiter, W. Gebauer, B. Ziegler, M. Sokolowski, P. Bäuerle, E. Umbach, Organic light emitting devices based on vapor deposited films of end-capped sexithiophene: evidence for Schottky barriers and transport limitations. J. Appl. Phys. 82, 3003–3013 (1997)CrossRefGoogle Scholar
  22. 22.
    F.G. Gao, A.J. Bard, Solid-state organic light-emitting diodes based on tris(2,2‘-bipyridine)ruthenium(II) complexes. J. Am. Chem. Soc. 122(30), 7426–7427 (2000)CrossRefGoogle Scholar
  23. 23.
    J.-K. Lee, D. Yoo, M.F. Rubner, Synthesis and characterization of an electroluminescent polyester containing the Ru(II) complex. Chem. Mater. 9(8), 1710–1712 (1997)CrossRefGoogle Scholar
  24. 24.
    E. Arias-Marin, J.C. Arnault, D. Guillon, T. Mailou, J. Le Moigne, B. Geffroy, J.M. Nunzi, Amphiphilic phenylene − ethynylene oligomers in Langmuir − Blodgett films. Self-assembling multilayers for electroluminescent devices. Langmuir 16(9), 4309–4318 (2000)CrossRefGoogle Scholar
  25. 25.
    Y. Hua, J. Peng, D. Cui, L. Li, Z. Xu, X. Xu, Studies on electroluminescence of multilayer Langmuir-Blodgett films. Thin Solid Films 210, 219–220 (1992)CrossRefGoogle Scholar
  26. 26.
    X. Chen, X. Yang, W. Fu, M. Xu, H. Chen, Enhanced performance of polymer solar cells with a monolayer of assembled gold nanoparticle films fabricated by Langmuir-Blodgett technique. Mater. Sci. Eng., B 178, 53–59 (2013)CrossRefGoogle Scholar
  27. 27.
    V. Álvarez-Venicio, B. Jiménez-Nava, M.P. Carreón-Castro, E. Rivera, I. Audelo-Méndez, A. Acosta-Huerta, M. Gutiérrez-Nava, Synthesis and incorporation in Langmuir films of oligophenylenevinylene dendrimers bearing a polar head group and different dendritic poly(benzyl ether) branches. Polymer 49(18), 3911–3922 (2008)CrossRefGoogle Scholar
  28. 28.
    B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990)CrossRefGoogle Scholar
  29. 29.
    B. Delley, Fast calculations of electrostatics in crystals and large molecules. J. Phys. Chem. 100, 6107–6110 (1996)CrossRefGoogle Scholar
  30. 30.
    B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000)CrossRefGoogle Scholar
  31. 31.
    B. Delley, D.E. Ellis, J. Freeman, E.J. Baerends, D. Post, Binding energy and electronic structure of small copper particles. Phys. Rev. B 27, 2132–2144 (1983)CrossRefGoogle Scholar
  32. 32.
    A.D. Becke, A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 88, 2547–2553 (1988)CrossRefGoogle Scholar
  33. 33.
    C. Lee, W. Yang, R.G. Parr, Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)CrossRefGoogle Scholar
  34. 34.
    J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)CrossRefGoogle Scholar
  35. 35.
    S. Peleshanko, A. Sidorenko, K. Larson, O. Villavicencio, M. Ornatska, D.V. McGrath, V.V. Tsukruk, Langmuir-Blodgett monolayers from lower generation amphiphilic monodendrons. Thin Solid Films 406(1–2), 233–240 (2002)CrossRefGoogle Scholar
  36. 36.
    W.-J. Pao, F. Zhang, P.A. Heiney, C. Mitchell, W.-D. Cho, V. Percec, Grazing-incidence x-ray diffraction study of Langmuir films of amphiphilic monodendrons. Phys. Rev. E 67, 021601 (2003)CrossRefGoogle Scholar
  37. 37.
    H. Yersin, Triplet emitters for OLED applications. Mechanisms of excitation trapping and control of emission properties. Top. Curr. Chem. 241, 1–24 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gabriela Alejandra Sosa-Ortiz
    • 1
  • Violeta Álvarez-Venicio
    • 1
    • 2
  • Jaime Octavio Guerra-Pulido
    • 1
  • Víctor Manuel Velazquez-Aguilar
    • 3
  • Vladimir A. Basiuk
    • 1
  • María del Pilar Carreón-Castro
    • 1
    Email author
  1. 1.Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoCoyoacánMexico
  2. 2.CONACYTMexico CityMexico
  3. 3.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCoyoacánMexico

Personalised recommendations