Advertisement

PEDOT:PSS post-treated by DMSO using spin coating, roll-to-roll and immersion: a comparative study

  • Rafael Misael Vedovatte
  • Matheus Colovati Saccardo
  • Eduardo Lima Costa
  • Carlos Eduardo CavaEmail author
Article
  • 31 Downloads

Abstract

Poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) anions (PEDOT:PSS) is a polymer widely used in organic optoelectronic devices as a hole transport material. This polymer is transparent, flexible, easy to process, and exhibits high resistance to degradation. However, the (PEDOT:PSS) can present low electrical conductivity, and subsequent treatment with a dopant material, such as Dimethyl Sulfoxide (DMSO), is often necessary to improve its performance as an electrode. In this work, the effect of the DMSO on PEDOT:PSS was studied and its relation with the deposition method, such as spin coating and roll-to-roll, was analyzed. To optimize their performance as an electrode, both films were post-treated several times using DMSO via the same deposition method until it has the highest value of conductivity. Optical, morphological, and electrical properties are reported as a function of deposition method and solvent treatment. It has been demonstrated that the films formed by both methods present high transparency in the visible spectrum, electrical conductivity and morphological characteristics suitable for use in optoelectronic devices. Also, the roll-to-roll deposition method proved to be promising for the development of large-scale conductive transparent films.

Notes

Acknowledgements

This work was partially supported by the Brazilian Institute of Science and Technology (INCT) in Carbon Nanomaterials and the Brazilian agencies Fapemig, CAPES, and CNPq. The authors gratefully acknowledge the financial support of CNPq, CAPES, and F. Araucária.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10854_2019_2524_MOESM1_ESM.pdf (101 kb)
Supplementary material 1 (PDF 102 kb)

References

  1. 1.
    D.R. Cairns, R.P. Witte, D.K. Sparacin, S.M. Sachsman, D.C. Paine, G.P. Crawford, R.R. Newton, Appl. Phys. Lett. 76, 1425 (2000).  https://doi.org/10.1063/1.126052 CrossRefGoogle Scholar
  2. 2.
    D.S. Hecht, L. Hu, G. Irvin, Adv. Mater. 23, 1482 (2011).  https://doi.org/10.1002/adma.201003188 CrossRefGoogle Scholar
  3. 3.
    L. Bieamann, N. Saxena, N. Hohn, M.A. Hossain, J.G.C. Veinot, P. Macller-Buschbaum, Adv. Electron. Mater. 5, 1800654 (2019).  https://doi.org/10.1002/aelm.201800654 CrossRefGoogle Scholar
  4. 4.
    R.V. Salvatierra, C.E. Cava, L.S. Roman, A.J.G. Zarbin, Adv. Funct. Mater. 23, 1490 (2013).  https://doi.org/10.1002/adfm.201201878 CrossRefGoogle Scholar
  5. 5.
    L.F. Lima, C.F. Matos, L.C. Gonçalves, R.V. Salvatierra, C.E. Cava, A.J.G. Zarbin, L.S. Roman, J. Phys. D 49, 105 (2016).  https://doi.org/10.1088/0022-3727/49/10/105106 CrossRefGoogle Scholar
  6. 6.
    T. Lee, W. Kwon, M. Park, Org. Electron. 67, 26 (2019).  https://doi.org/10.1016/j.orgel.2019.01.008 CrossRefGoogle Scholar
  7. 7.
    E. Keyvani-Someh, Z. Hennighausen, W. Lee, R. Igwe, M. Kramdi, S. Kar, H. Fenniri, ACS Appl. Energy Mater. 1, 17 (2018).  https://doi.org/10.1021/acsaem.7b00020 CrossRefGoogle Scholar
  8. 8.
    Z. Zhang, R. Lv, Y. Jia, X. Gan, H. Zhu, F. Kang, Appl. Sci. 8, 152 (2018).  https://doi.org/10.3390/app8020152 CrossRefGoogle Scholar
  9. 9.
    X. Liang, T. Zhao, W. Jiang, X. Yu, Y. Hu, P. Zhu, H. Zheng, R. Sun, C.P. Wong, Nano Energy 59, 508 (2019).  https://doi.org/10.1016/j.nanoen.2019.02.071 CrossRefGoogle Scholar
  10. 10.
    H. Kang, G.R. Yi, Y. Kim, J. Cho, Macromol. Res. 26, 1066 (2018).  https://doi.org/10.1007/s13233-018-6150-9 CrossRefGoogle Scholar
  11. 11.
    L.G. Albano, M.H. Boratto, O. Nunes-Neto, C.F. Graeff, Org. Electron. 50, 311 (2017).  https://doi.org/10.1016/j.orgel.2017.08.011 CrossRefGoogle Scholar
  12. 12.
    C.J. Zhang, V. Nicolosi, Energy Storage Mater. 16, 102 (2019).  https://doi.org/10.1016/j.ensm.2018.05.003 CrossRefGoogle Scholar
  13. 13.
    W. Cao, J. Li, H. Chen, J. Xue, J. Photonics Energy 4, 1 (2014).  https://doi.org/10.1117/1.JPE.4.040990 CrossRefGoogle Scholar
  14. 14.
    A.G. Macedo, C.E. Cava, C.D. Canestraro, L. Contini, L.S. Roman, Microsc. Microanal. 11, 118 (2005).  https://doi.org/10.1017/S1431927605051032 CrossRefGoogle Scholar
  15. 15.
    M. He, F. Qiu, Z. Lin, Energy Environ. Sci. 6, 1352 (2013).  https://doi.org/10.1039/c3ee24193a CrossRefGoogle Scholar
  16. 16.
    S. Zhang, Z. Yu, P. Li, B. Li, F.H. Isikgor, D. Du, K. Sun, Y. Xia, J. Ouyang, Org. Electron. 32, 149 (2016).  https://doi.org/10.1016/j.orgel.2016.02.024 CrossRefGoogle Scholar
  17. 17.
    S.H. Lee, J.S. Sohn, S.B. Kulkarni, U.M. Patil, S.C. Jun, J.H. Kim, Org. Electron. 15, 3423 (2014).  https://doi.org/10.1016/j.orgel.2014.09.020 CrossRefGoogle Scholar
  18. 18.
    B. Peng, X. Guo, C. Cui, Y. Zou, C. Pan, Y. Li, Appl. Phys. Lett. 98, 243308 (2011).  https://doi.org/10.1063/1.3600665 CrossRefGoogle Scholar
  19. 19.
    T. Xiao, W. Cui, J. Anderegg, J. Shinar, R. Shinar, Org. Electron. 12, 257 (2011).  https://doi.org/10.1016/j.orgel.2010.11.008 CrossRefGoogle Scholar
  20. 20.
    C.J. Ko, Y.K. Lin, F.C. Chen, C.W. Chu, Appl. Phys. Lett. 90, 63509 (2007).  https://doi.org/10.1063/1.2437703 CrossRefGoogle Scholar
  21. 21.
    J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, N.S. Sariciftci, Thin Solid Films 536, 211 (2013).  https://doi.org/10.1016/j.tsf.2013.03.124 CrossRefGoogle Scholar
  22. 22.
    Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Muller-Meskamp, K. Leo, Adv. Funct. Mater. 21, 1076 (2011).  https://doi.org/10.1002/adfm.201002290 CrossRefGoogle Scholar
  23. 23.
    I. Cruz-Cruz, M. Reyes-Reyes, M.A. Aguilar-Frutis, A.G. Rodriguez, R. López-Sandoval, Synth. Met. 160, 1501 (2010).  https://doi.org/10.1016/j.synthmet.2010.05.010 CrossRefGoogle Scholar
  24. 24.
    T.Y. Kim, J.E. Kim, K.S. Suh, Polym. Int. 55, 80 (2006).  https://doi.org/10.1002/pi.1921 CrossRefGoogle Scholar
  25. 25.
    C.M. Palumbiny, F. Liu, T.P. Russell, A. Hexemer, C. Wang, P. Muller-Buschbaum, Adv. Mater. 27, 3391 (2015).  https://doi.org/10.1002/adma.201500315 CrossRefGoogle Scholar
  26. 26.
    S. Mahato, J. Puigdollers, C. Voz, M. Mukhopadhyay, M. Mukherjee, S. Hazra, Appl. Surf. Sci. 499, 143967 (2020).  https://doi.org/10.1016/j.apsusc.2019.143967 CrossRefGoogle Scholar
  27. 27.
    J.P. Thomas, L. Zhao, D. McGillivray, K.T. Leung, J. Mater. Chem. A 2, 2383 (2014).  https://doi.org/10.1039/C3TA14590E CrossRefGoogle Scholar
  28. 28.
    J.S. Yeo, J.M. Yun, D.Y. Kim, S. Park, S.S. Kim, M.H. Yoon, T.W. Kim, S.I. Na, ACS Appl. Mater. Interfaces 4(5), 2551 (2012).  https://doi.org/10.1021/am300231v CrossRefGoogle Scholar
  29. 29.
    H. Liu, X. Li, L. Zhang, Q. Hong, J. Tang, A. Zhang, C.Q. Ma, Org. Electron. 47, 220 (2017).  https://doi.org/10.1016/j.orgel.2017.05.025 CrossRefGoogle Scholar
  30. 30.
    P.T. Wu, M.C. Tsai, T.F. Guo, Y.S. Fu, Org. Electron. 73, 273 (2019).  https://doi.org/10.1016/j.orgel.2019.04.041 CrossRefGoogle Scholar
  31. 31.
    S. Xu, C. Liu, Z. Xiao, W. Zhong, Y. Luo, H. Ou, J. Wiezorek, Sol. Energy 157, 125 (2017).  https://doi.org/10.1016/j.solener.2017.08.009 CrossRefGoogle Scholar
  32. 32.
    D. Pavia, G. Lampman, G. Kriz, J. Vyvyan, Introduction to Spectroscopy (Cengage Learning, San Francisco, 2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringTechnological Federal University of Paraná (UTFPR)LondrinaBrazil

Personalised recommendations