Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21425–21434 | Cite as

Photoelectrochemical performance of W-doped BiVO4 photoanode

  • Lei Zhao
  • Jindong Wei
  • Yanting Li
  • Chun Han
  • Lin Pan
  • Zhifeng LiuEmail author
Article
  • 31 Downloads

Abstract

One of the crucial challenges in enhancing the photoelectrochemical (PEC) water splitting performance of BiVO4 photoanode is to improve the charge separation and transfer efficiency. Therefore, in this paper, a novel multilayer gradient W-doped BiVO4 photoanode is fabricated for improved performances in solar water splitting. Firstly, different amounts of W mono-doped BiVO4 photoanodes are prepared, and the W (5%)-doped BiVO4 photoanode reaches highest photocurrent density of 0.61 mA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE). Compared with the photocurrent density of the pure BiVO4 photoanode (0.28 mA cm−2), the enhancement can be attributed to the doped W which acts as an electron donor that could reduce the surface charge transfer resistance and facilitate charge transfer. Furthermore, multilayer gradient W-doped BiVO4 photoanodes are prepared to enhance PEC performances. The BVO-530 achieves a photocurrent density of 1.17 mA cm−2 at 1.23 V versus RHE due to the multilayer gradient structure which forms a diffusion path for electron–holes caused by the gradual increase in the Fermi level. The mechanisms of multilayer gradient W-doped BiVO4 photoanodes are discussed in detail based on PEC measurements. This work provides a new strategy for designing and fabricating photoanode systems to enhance the charge separation and transport for efficient water splitting.

Notes

Acknowledgements

The authors gratefully acknowledge financial support from Science Funds of Tianjin for Distinguished Young Scholar (No. 17JCJQJC44800), Key Research and Development Plan of Tianjin (No. 19YFSLQY00020), Open Foundation of Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy (No. HBSKFZD2017001) and Science and Technology Project of Henan Province (Nos. 182106000029, 192102310483).

Supplementary material

10854_2019_2521_MOESM1_ESM.docx (353 kb)
Supplementary material 1 (DOCX 369 kb)

References

  1. 1.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)Google Scholar
  2. 2.
    A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Catal. Surv. Asia 7, 31–38 (2003)Google Scholar
  3. 3.
    X.F. Wu, Y. Sun, H. Li, Y.J. Wang, C.X. Zhang, J.R. Zhang, J.Z. Su, Y.W. Wang, Y. Zhang, C. Wang, M. Zhang, In-situ synthesis of novel p-n junction of Ag2CrO4-Bi2Sn2O7 hybrids for visible-light-driven photocatalysis. J. Alloys. Compd. 740, 1197–1203 (2018)Google Scholar
  4. 4.
    D. Cui, L. Wang, K. Xu, L. Ren, L. Wang, Y.X. Yu, Y. Du, W.C. Hao, Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J. Mater. Chem. A 6, 2193–2199 (2018)Google Scholar
  5. 5.
    D. Chen, Z.F. Liu, Z.G. Guo, W.G. Yan, M.N. Ruan, Decorating Cu2O photocathode with noble-metal-free Al and NiS cocatalysts for efficient photoelectrochemical water splitting by light harvesting management and charge separation design. Chem. Eng. J. 381, 122655–122663 (2019)Google Scholar
  6. 6.
    Q.J. Cai, Z.F. Liu, C.C. Han, Z.F. Tong, C.H. Ma, CuInS2/Sb2S3 heterostructure modified with noble metal co-catalyst for efficient photoelectrochemical water splitting. J. Alloys. Compd. 795, 319–326 (2019)Google Scholar
  7. 7.
    Z. Fu, T. Jiang, L. Zhang, B. Liu, D. Wang, L. Wang, T. Xie, Surface treatment with Al3+ on a Ti-doped alpha-Fe2O3 nanorod array photoanode for efficient photoelectrochemical water splitting. J. Mater. Chem. A 2, 13705–13712 (2014)Google Scholar
  8. 8.
    D. Chen, Z.F. Liu, M. Zhou, P.D. Wu, J.D. Wei, Enhanced photoelectrochemical water splitting performance of α-Fe2O3 nanostructures modified with Sb2S3 and cobalt phosphate. J. Alloys. Compd. 742, 918–927 (2018)Google Scholar
  9. 9.
    B.F. Zheng, O.Y. Ting, W. Zhu, J.Y. Long, Y.B. Chen, Z.Q. Liu, Enhanced plasmon-driven photoelectrocatalytic methanol oxidation on Au decorated α-Fe2O3 nanotube arrays. Chem. Commun. 54, 9583–9586 (2018)Google Scholar
  10. 10.
    R.B. Wei, P.Y. Kuang, H. Cheng, Y.B. Chen, M.Y. Zhang, Z.Q. Liu, Plasmon-Enhanced photoelectrochemical water splitting on gold NPs decorated ZnO/CdS nanotube arrays. ACS Sustain. Chem. Eng. 5, 4249–4257 (2017)Google Scholar
  11. 11.
    Y.Y. Lan, Z.F. Liu, Z.G. Guo, X.F. Li, L. Zhao, L. Zhan, M. Zhang, A ZnO/ZnFe2O4 uniform core-shell heterojunction with a tubular structure modified by NiOOH for efficient photoelectrochemical water splitting. Dalton Trans. 47, 12181–12187 (2018)Google Scholar
  12. 12.
    C.H. Ma, Z.F. Liu, Q.J. Cai, C.C. Han, Z.F. Tong, ZnO photoelectrode simultaneous modified with Cu2O and Co-Pi based on broaden light absorption and efficient photogenerated carriers separation. Inorg. Chem. Front. 5, 2571–2578 (2018)Google Scholar
  13. 13.
    Y.T. Li, Z.F. Liu, J. Zhang, Z.G. Guo, Y. Xin, L. Zhao, 1D/0D WO3/CdS heterojunction photoanodes modified with dual co-catalysts for efficient photoelectrochemical water splitting. J. Alloys. Compd. 790, 493–501 (2019)Google Scholar
  14. 14.
    Y.T. Li, Z.F. Liu, Z.G. Guo, M.N. Ruan, X.F. Li, Y.L. Liu, Efficient WO3 photoanode modified by Pt layer and plasmonic Ag for enhanced charge separation and transfer to promote photoelectrochemical performances. ACS Sustain. Chem. Eng. 7, 12582–12590 (2019)Google Scholar
  15. 15.
    A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4, in aqueous AgNO3 solution. Catal. Lett. 53, 229–230 (1998)Google Scholar
  16. 16.
    Q.Z. Wang, J.J. He, Y.B. Shi, S.L. Zhang, T.J. Niu, H.D. She, Y.P. Bi, Designing non-noble/semiconductor Bi/BiVO4 photoelectrode for the enhanced photoelectrochemical performance. Chem. Eng. J. 326, 411–418 (2017)Google Scholar
  17. 17.
    A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459–11467 (1999)Google Scholar
  18. 18.
    Q.Z. Wang, N. An, W. Chen, R.F. Wang, F.P. Wang, Z.Q. Lei, Photocatalytic water splitting into hydrogen and research on synergistic of Bi/Sm with solid solution of Bi-Sm-V photocatalyst. Int. J. Hydrog. Energy 37, 12886–12892 (2012)Google Scholar
  19. 19.
    H.N. Yun, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett. 1, 2607–2612 (2010)Google Scholar
  20. 20.
    J.Z. Su, L.J. Guo, S. Yoriya, Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: application to photoelectrochemical water splitting. Cryst. Growth Des. 10, 856–861 (2010)Google Scholar
  21. 21.
    H.S. Han, S. Shin, D.H. Kim, Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 11, 1299–1307 (2018)Google Scholar
  22. 22.
    J.D. Wei, C.L. Zhou, Y. Xin, X.F. Li, Cooperation effect of heterojunction and co-catalyst in BiVO4/Bi2S3/NiOOH photoanode for improving photoelectrochemical performances. New J. Chem. 42, 19415–19422 (2018)Google Scholar
  23. 23.
    S.Y. Bao, Q.F. Wu, S.Z. Chang, B.Z. Tian, Z-scheme CdS-Au-BiVO4 with enhanced photocatalytic activity for organic contaminant decomposition. Catal. Sci. Technol. 7, 124–133 (2016)Google Scholar
  24. 24.
    X. Zhong, H. He, M. Yang, G. Ke, Z. Zhao, F.Q. Dong, B.W. Wang, Y.Q. Chen, X.Y. Shi, Y. Zhou, In3+-doped BiVO4 photoanode with passivated surface states for photoelectrochemical water oxidation. J. Mater. Chem. A 6, 10456–10465 (2018)Google Scholar
  25. 25.
    W. Luo, J. Wang, X. Zhao, Z.Y. Zhao, Z.S. Li, Z.G. Zou, Formation energy and photoelectrochemical properties of BiVO4 after doping at Bi3+ or V5+ sites with higher valence metal ions. Phys. Chem. Chem. Phys. 15, 1006–1013 (2013)Google Scholar
  26. 26.
    W.J. Luo, Z.S. Li, T. Yu, Z.G. Zou, Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo-doped BiVO4. J. Phys. Chem. C 116, 5076–5081 (2013)Google Scholar
  27. 27.
    L.F. Li, X.L. Zhao, D.L. Pan, G.S. Li, Nanotube array-like WO3/W photoanode fabricated by electrochemical anodization for photoelectrocatalytic overall water splitting. Chin. J. Catal. 38, 2132–2140 (2017)Google Scholar
  28. 28.
    H.S. Park, H.C. Lee, K.C. Leonard, G.J. Liu, A.J. Bard, Unbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and ZnxCd1-xSe. ChemPhysChem 14, 2277–2287 (2013)Google Scholar
  29. 29.
    J. Zhang, M. Deng, F. Ren, Y. Wu, Y.X. Wang, Effects of Mo/W codoping on the visible-light photocatalytic activity of monoclinic BiVO4 within the GGA + U framework. RSC Adv. 6, 12290–12297 (2016)Google Scholar
  30. 30.
    Z. Yang, B. Chang, J. Zou, J. Qiao, P. Gao, Y. Zeng, Li H Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode. J Colloid Interface Sci. 46, 7035–7044 (2007)Google Scholar
  31. 31.
    A. Tamirat, W.N. Su, A. Dubale, H.M. Chen, Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) a-Fe2O3 photoanode. J. Mater. Chem. A 3, 5949–5961 (2015)Google Scholar
  32. 32.
    W.Y. Dong, Y. Liu, G.M. Zeng, S.Q. Zhang, T. Cai, J.L. Yuan, H. Chen, J. Gao, C.B. Liu, Regionalized and vectorial charges transferring of Cd1-xZnxS twin nanocrystal homojunctions for visible-light driven photocatalytic applications. J. Colloid Interface Sci. 518, 156–164 (2018)Google Scholar
  33. 33.
    Z. Luo, C. Li, S. Liu, T. Wang, J. Guo, Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation. Chem. Sci. 8, 92–101 (2017)Google Scholar
  34. 34.
    D. Chen, Z.F. Liu, Dual axial gradient-doping (Zr and Sn) on hematite for promoting charge separation in photoelectrochemical water splitting. ChemSusChem 11, 3438–3448 (2018)Google Scholar
  35. 35.
    X. Zhao, Z. Chen, Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO4 with W doping. Beilstein J. Nanotechnol. 8, 2640–2647 (2017)Google Scholar
  36. 36.
    P. Chakthranont, T.R. Hellstern, J.M. Mcenaney, T.F. Jaramillo, Design and fabrication of a precious metal-free tandem core-shell p-n Si/W-doped BiVO4 photoanode for unassisted water splitting. Adv. Energy Mater. 7, 515–523 (2017)Google Scholar
  37. 37.
    X. Zhao, J. Hu, S. Chen, Z. Chen, An investigation on the role of W doping in BiVO4 photoanodes used for solar water splitting. Phys. Chem. Chem. Phys. 20, 13637–13645 (2018)Google Scholar
  38. 38.
    H. Ye, H.S. Park, A.J. Bard, Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J. Phys. Chem. C 115, 12464–12470 (2015)Google Scholar
  39. 39.
    F. Cardon, W.P. Gomes, On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott–Schottky plot. J. Phys. D 11, 63–67 (2001)Google Scholar
  40. 40.
    J.Z. Su, C. Liu, D.Y. Liu, M.T. Li, J.L. Zhou, Enhanced photoelectrochemical performance of the BiVO4/Zn:biVO4 homojunction for water oxidation. ChemCatChem 8, 3279–3286 (2016)Google Scholar
  41. 41.
    Q. Yu, X. Meng, L. Shi, Hematite homojunctions without foreign element doping for efficient and stable overall water splitting. RSC Adv. 6, 62263–62269 (2016)Google Scholar
  42. 42.
    D. Gross, I. Mora-Seró, T. Dittrich, Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J. Am. Chem. Soc. 132, 5981–5983 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Civil Engineering and ArchitectureXinxiang UniversityXinxiangChina
  2. 2.School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional MaterialsTianjin Chengjian UniversityTianjinChina

Personalised recommendations