Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21406–21415 | Cite as

Facile synthesis and color conversion of Cu-doped ZnSe quantum dots in an aqueous solution

  • Yan Wu
  • Shiyao Chen
  • Yalian Weng
  • Yongai ZhangEmail author
  • Chaoxing Wu
  • Lei Sun
  • Sangling Zhang
  • Qun Yan
  • Tailiang Guo
  • Xiongtu ZhouEmail author


A facile growth-doping method in aqueous solution has been developed to synthesize Cu-doped ZnSe (ZnSe:Cu) QDs by using thioglycolic acid (TGA) as a stabilizer. The effects of the Cu doping concentration, reaction temperature and pH value on the synthesis of ZnSe:Cu QDs were investigated systematically. The as-synthesized ZnSe:Cu QDs with an excellent green emission still belong to a cubic zinc blende crystalline structure, and the average particle size is approximately 3.0 nm. The photoluminescent quantum yield (PLQY) is as high as 20%, and the exciton radiative lifetime is approximately 113.8 ns. Moreover, the patterned ZnSe:Cu QDs thin films have been successfully fabricated by using an inkjet printing method to verify the ability of the potential application to the color conversion. With the assistance of 5.5 pair distributed bragg reflector (DBR) structures, the color coordinate of the ZnSe:Cu QDs thin film excited by the blue LEDs is located at (0.2182, 0.4352) and the intensity of PL peak located at 513 nm reaches to be 45.1%. In addition, the PLQY of color conversion-based ZnSe:Cu QDs thin film is approximately 9.64%. Based on these results, ZnSe:Cu QDs are potentially useful for the fabrication of optoelectronic devices, especially QDs photoluminescence and electroluminescence.



This work was financially supported by the National Natural Science Foundation of China (Nos. 61775038, 61904031), the National Natural Science Foundation of Fujian Province, China (Nos. 2017J01758, 2017J01504 and 2019J01221) and the New Century Excellent Talents Supporting Program of Fujian Province.


  1. 1.
    S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, J. Mater. Sci. Mater. Electron. 27, 4163–4171 (2016)Google Scholar
  2. 2.
    J. Kugai, E. Dodo, S. Seino, T. Nakagawa, T. Okazaki, T.A. Yamamoto, J. Nanopart. Res. 62, 1–9 (2016)Google Scholar
  3. 3.
    X.W. Hu, Y. Qiu, X.X. Jiang, Y.L. Li, J. Mater. Sci. Mater. Electron. 29, 15983–15993 (2018)Google Scholar
  4. 4.
    A.R. Khezripour, D. Souri, Optik 183, 294–301 (2019)Google Scholar
  5. 5.
    X. Yang, C. Pu, H. Qin, S. Liu, Z. Xu, X. Peng, J. Am. Chem. Soc. 141, 2288–2298 (2019)Google Scholar
  6. 6.
    H.S. Chen, S.J.J. Wang, C.J. Lo, J.Y. Chi, Appl. Phys. Lett. 86, 131905 (2005)Google Scholar
  7. 7.
    M. Molaei, S. Pourjafari, Bull. Mater. Sci. 37, 9–13 (2014)Google Scholar
  8. 8.
    G. Feng, C. Yang, S. Zhou, Nano Lett. 13, 272–275 (2013)Google Scholar
  9. 9.
    M.Y. Chiu, C.C. Chen, J.T. Sheu, K.H. Wei, Org. Electron. 10, 769–774 (2009)Google Scholar
  10. 10.
    M.L. Desai, B. Deshmukh, N. Lenka, V. Haran, S. Jha, H. Basu, R.K. Singhal, P.K. Sharma, S.K. Kailasa, K.H. Kim, Spectrochim. Acta A 210, 212–221 (2019)Google Scholar
  11. 11.
    J. Li, Y. Tang, Z. Li, X. Ding, S. Yu, B. Yu, Nanomaterials 8, 508 (2018)Google Scholar
  12. 12.
    B.K.H. Yen, A. Günther, M.A. Schmidt, K.F. Jensen, M.G. Bawendi, Angew. Chem. 117, 5583–5587 (2005)Google Scholar
  13. 13.
    S.H. Choi, H. Song, I.K. Park, J.H. Yum, S.S. Kim, S. Lee, Y.E. Sung, J. Photochem. Photobiol. 179, 135–141 (2005)Google Scholar
  14. 14.
    S. Asokan, K.M. Krueger, A. Alkhawaldeh, A.R. Carreon, Z. Mu, V.L. Colvin, N.V. Mantzaris, M.S. Wong, Nanotechnology 16, 2000–2011 (2005)Google Scholar
  15. 15.
    S.J. Cho, D. Maysinger, M. Jain, B. Röder, S. Hackbarth, F.M. Winnik, Langmuir 23, 1974–1980 (2007)Google Scholar
  16. 16.
    R. Wang, Y. Wang, Q. Feng, L. Zhou, F. Gong, Y. Lan, Mater. Lett. 66, 261–263 (2012)Google Scholar
  17. 17.
    J. Pei, H. Zhu, X. Wang, H. Zhang, X. Yang, Anal. Chim. Acta 757, 63–68 (2012)Google Scholar
  18. 18.
    K. Ou, S. Wang, X. Zhang, L. Yi, J. Mater. Sci. 54, 4049–4055 (2018)Google Scholar
  19. 19.
    A.P. Pardo Gonzalez, H.G. Castro-Lora, L.D. López-Carreño, H.M. Martínez, N.J. Torres Salcedo, J. Phys. Chem. Solids 75, 713–725 (2014)Google Scholar
  20. 20.
    N.N. Hewa-Kasakarage, M. Kirsanova, A. Nemchinov, N. Schmall, P.Z. EI-Khoury, A.N. Tarnovsky, M. Zamkov, J. Am. Chem. Soc. 131, 1328–1334 (2009)Google Scholar
  21. 21.
    J. Mazher, S. Badwe, R. Sengar, D. Gupta, R.K. Pandey, Physica E 16, 209–213 (2003)Google Scholar
  22. 22.
    F. Dehghan, M. Molaei, F. Amirian, M. Karimipour, A.R. Bahador, Mater. Chem. Phys. 206, 76–84 (2018)Google Scholar
  23. 23.
    H. Nishimura, Y. Lin, M. Hizume, T. Taniguchi, N. Shigekawa, T. Takagi, S. Sobue, S. Kawai, E. Okuno, D. Kim, AIP Adv. 9, 025223 (2019)Google Scholar
  24. 24.
    X. Xue, L. Chen, C. Zhao, L. Chang, J. Mater. Sci. Mater. Electron. 29, 9184–9192 (2018)Google Scholar
  25. 25.
    J.F. Suyver, T. van der Beek, S.F. Wuister, J.J. Kelly, A. Meijerink, Appl. Phys. Lett. 79, 4222–4224 (2001)Google Scholar
  26. 26.
    S. Xu, C. Wang, Z. Wang, H. Zhang, J. Yang, Q. Xu, H. Shao, R. Li, W. Lei, Y. Cui, Nanotechnology 22, 275605 (2011)Google Scholar
  27. 27.
    L. Wang, L. Cao, G. Su, W. Liu, C. Xia, H. Zhou, Appl. Surf. Sci. 280, 673–678 (2013)Google Scholar
  28. 28.
    J. Zhang, Q. Chen, W. Zhang, S. Mei, L. He, J. Zhu, G. Chen, R. Guo, Appl. Surf. Sci. 351, 655–661 (2015)Google Scholar
  29. 29.
    F. Gong, L. Sun, H. Ruan, H. Cai, Mater. Express 8, 173–181 (2018)Google Scholar
  30. 30.
    L.C. He, Y.A. Zhang, S.L. Zhang, X.T. Zhou, Z.X. Lin, T.L. Guo, Mater. Technol. 33, 205–213 (2017)Google Scholar
  31. 31.
    S.L. Zhang, C.F. Lin, Y.L. Weng, L.C. He, T.L. Guo, Y.A. Zhang, X.T. Zhou, J. Mater. Sci. Mater. Electron. 29, 16805–16814 (2018)Google Scholar
  32. 32.
    Y.L. Weng, G.X. Chen, X.T. Zhou, Q. Yan, T.L. Guo, Y.A. Zhang, Nanotechnology 30, 085702 (2019)Google Scholar
  33. 33.
    Y.L. Ding, S.Z. Shen, H.D. Sun, K.N. Sun, F.T. Liu, Sens. Actuator B Chem. 203, 35–43 (2014)Google Scholar
  34. 34.
    D.G. Chen, R. Viswanatha, G.L. Ong, R.G. Xie, M. Balasubramaninan, X.G. Peng, J. Am. Chem. Soc. 131, 9333–9339 (2009)Google Scholar
  35. 35.
    D. Zhao, J.T. Li, F. Gao, C.L. Zhang, Z.K. He, RSC Adv. 4, 47005–47011 (2012)Google Scholar
  36. 36.
    J. Zhuang, X. Zhang, G. Wang, D. Li, W. Yang, T. Li, J. Mater. Chem. 13, 1853 (2003)Google Scholar
  37. 37.
    Z. Liu, A. Tang, M. Wang, C. Yang, F. Teng, J. Mater. Chem. 3, 10114–10120 (2015)Google Scholar
  38. 38.
    H. Ye, A. Tang, L. Huang, Y. Wang, C. Yang, Y. Hou, H. Peng, F. Zhang, F. Teng, Langmuir 29, 8728–8735 (2013)Google Scholar
  39. 39.
    A.W. Tang, L.X. Yi, W. Han, F. Teng, Y.S. Wang, Y.B. Hou, M.Y. Gao, Appl. Phys. Lett. 97, 033112 (2010)Google Scholar
  40. 40.
    L. Yang, J.G. Zhu, D.Q. Xiao, RSC Adv. 2, 8179–8188 (2012)Google Scholar
  41. 41.
    C. Shu, B. Huang, X. Chen, Y. Wang, X. Li, L. Ding, W. Zhong, Spectrochim. Acta A 104, 143–149 (2013)Google Scholar
  42. 42.
    P. Yang, N. Murase, Adv. Funct. Mater. 20, 1258–1265 (2010)Google Scholar
  43. 43.
    J.K. Cooper, S. Gul, S.A. Lindley, J. Yano, J.Z. Zhang, A.C.S. Appl, Mater. Interface 7, 10055–10066 (2015)Google Scholar
  44. 44.
    Q. Zeng, X. Kong, Y. Sun, Y. Zhang, L. Tu, J. Zhao, H. Zhang, J. Phys. Chem. C 112, 8587–8593 (2008)Google Scholar
  45. 45.
    X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S.V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W.W. Yu, A.L. Rogach, ACS Nano 7, 11234–11241 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Information EngineeringFuzhou UniversityFuzhouChina
  2. 2.Zhicheng CollegeFuzhou UniversityFuzhouChina

Personalised recommendations