Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21398–21405 | Cite as

The effect of artificial stress on structure, electrical and mechanical properties of Sr2+ doped BNT–BT lead-free piezoceramics

  • Chenwan Li
  • Ling YangEmail author
  • Jiwen XuEmail author
  • Changlai Yuan
  • Changrong Zhou
  • Hua Wang


The effect of Sr2+ doping on the microstructural, electrical and mechanical properties of 0.93(Bi0.5Na0.5)TiO3–0.07BaTiO3 ceramics was investigated. The X-ray diffraction and Raman results show the phase transition from tetragonal phase to rhombohedral phase induced by Sr2+ ions. The Sr2+ doping promotes grain growth, but refines grains with Sr2+ content continuously increasing. Three dielectric anomalies at Td, Tp and Tm are obvious, and Td is seriously affected by Sr2+ content. The Td peak is confirmed by the T1 peak at dynamic mechanical analysis. The coercive field (Ec) and remnant polarization (Pr) are modified by grain size effect and phase structure induced by Sr2+ doping. The piezoelectric coefficient can be effectively improved by Sr2+ doping.



This work is supported by the National Nature Science Foundation of China (Grant Nos. 11664006, 61741105), Guangxi Nature Science Foundation (Grant Nos. 2017GXNSFDA198024, 2018GXNSFDA281042, 2018GXNSFAA294039) and Guangxi Key Laboratory of Information Materials (Grant No. 171009-Z).


  1. 1.
    J. Rӧdel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)CrossRefGoogle Scholar
  2. 2.
    C.H. Hong, H.P. Kim, B.Y. Choi, H.S. Han, J.S. Son, C.W. Ahn, W. Jo, J. Materiomics 1, 1–24 (2016)CrossRefGoogle Scholar
  3. 3.
    E. Ringgaard, T. Wurlitzer, J. Eur. Ceram. Soc. 25(12), 2701–2706 (2005)CrossRefGoogle Scholar
  4. 4.
    T.R. Shrout, S.J. Zhang, J. Electroceramics 19(1), 111–124 (2007)CrossRefGoogle Scholar
  5. 5.
    W. Hu, X.L. Tan, K. Rajan, J. Eur. Ceram. Soc. 31(5), 801–807 (2011)CrossRefGoogle Scholar
  6. 6.
    H.B. Yang, C.R. Zhou, Q. Zhou, G.H. Chen, H. Wang, W.Z. Li, J. Alloys Compd. 542(25), 17–21 (2012)CrossRefGoogle Scholar
  7. 7.
    H.B. Zhang, P.W. Xu, E. Patterson, J.D. Zang, S.L. Jiang, J. Rӧdel, J. Eur. Ceram. Soc. 35(9), 2501–2512 (2015)CrossRefGoogle Scholar
  8. 8.
    T. Takenaka, K.I. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30(9B), 2236–2239 (1991)CrossRefGoogle Scholar
  9. 9.
    T. Takenaka, H. Nagata, Y. Hiruma, Jpn. J. Appl. Phys. 47(5), 3787–3801 (2008)CrossRefGoogle Scholar
  10. 10.
    M.L. Liu, F.Y. Lei, N. Jiang, Q.J. Zheng, D.M. Lin, J. Mater. Res. Bull. 74, 62–69 (2016)CrossRefGoogle Scholar
  11. 11.
    F.F. Li, Y.F. Liu, Y.N. Lyu, Y.H. Qi, Z.L. Yu, C.G. Lu, Ceram. Int. 43(1), 106–110 (2017)CrossRefGoogle Scholar
  12. 12.
    W.H. Han, J.H. Koh, Ceram. Int. 44(5), 5352–5358 (2018)CrossRefGoogle Scholar
  13. 13.
    R.D. Zhou, T.T. Liu, M.M. Liu, X. Duan, Jiangsu Ceram. 42(2), 8–11 (2009)Google Scholar
  14. 14.
    W.C. Lee, C.Y. Huang, L.K. Tsao, Y.C. Wu, J. Alloys Compd. 492(1–2), 307–312 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Yu, X.S. Wang, X. Yao, Ferroelectrics 451(1), 96–102 (2013)CrossRefGoogle Scholar
  16. 16.
    X.C. Zheng, G.P. Zheng, L. Zheng, Z.Y. Jiang, Ceram. Int. 39(2), 1233–1240 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Yu, H. Zou, Q.F. Cao, X.S. Wang, Y.X. Li, X. Yao, Ferroelectrics 487(1), 77–85 (2015)CrossRefGoogle Scholar
  18. 18.
    L. Zhang, X.B. Ren, M.A. Carpenter, Phys. Rev. B 95(5), 054116 (2017)CrossRefGoogle Scholar
  19. 19.
    C.R. Zhou, Q.N. Li, J.W. Xu, L. Yang, W.D. Zeng, C.L. Yuan, G.H. Chen, J. Am. Ceram. Soc. 101(4), 1–12 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Saïd, P. Marchet, T.M. Méjean, J.P. Mercurio, Mater. Lett. 58(9), 1405–1409 (2004)CrossRefGoogle Scholar
  21. 21.
    Z.Y. Cen, C.R. Zhou, H.B. Yang, Q. Zhou, W.Z. Li, C.L. Yan, L. Cao, J. Song, L. Peng, J. Am. Ceram. Soc. 96(7), 2252–2256 (2013)CrossRefGoogle Scholar
  22. 22.
    Z.Y. Cen, C.R. Zhou, J. Cheng, X.J. Zhou, W.Z. Li, C.L. Yan, S.L. Feng, Y.Q. Liu, D.S. Lao, J. Alloys Compd. 567(5), 110–114 (2013)CrossRefGoogle Scholar
  23. 23.
    Z.Y. Cen, C.R. Zhou, Q. Zhou, H.B. Yang, X.J. Zhou, J. Cheng, X.L. Ye, Ceram. Int. 40(7), 10431–10439 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Yuan, X.H. Zhou, C.J. Zhao, B. Li, S.R. Zhang, J. Electron. Mater. 39(11), 2471–2475 (2010)CrossRefGoogle Scholar
  25. 25.
    P. Du, L.H. Luo, W.P. Li, Y.P. Zhang, H.B. Chen, J. Alloys Compd. 559(15), 92–96 (2013)CrossRefGoogle Scholar
  26. 26.
    C.R. Zhou, X.Y. Liu, Pie. Aco. 30(4), 480–482 (2008)Google Scholar
  27. 27.
    C.R. Zhou, X.Y. Liu, G.H. Chen, J.W. Xu, M.H. Jiang, Pie. Aco. 31(3), 398–400 (2009)Google Scholar
  28. 28.
    C.R. Zhou, X.Y. Liu, W.Z. Li, C.L. Yuan, Solid State Commun. 149(11–12), 481–485 (2009)CrossRefGoogle Scholar
  29. 29.
    P.S. Silva Jr., J.C.C.A. Diaz, O. Florêncio, M. Venet, J.C. M’peko, Arch. Metall. Mater. 61(1), 17–20 (2016)CrossRefGoogle Scholar
  30. 30.
    M.P. Zheng, Y.D. Hou, Y.G. Yue, H.X. Chen, M.K. Zhu, J. Appl. Phys. 119(16), 164101 (2016)CrossRefGoogle Scholar
  31. 31.
    M.P. Zheng, Y.D. Hou, M.K. Zhu, M. Zhang, H. Yan, J. Eur. Ceram. Soc. 34(10), 2275–2283 (2014)CrossRefGoogle Scholar
  32. 32.
    M. Eriksson, H.X. Yan, G. Viola, H.P. Ning, D. Gruner, M. Nygren, M.J. Reece, Z.J. Shen, J. Am. Ceram. Soc. 94(10), 3391–3396 (2011)CrossRefGoogle Scholar
  33. 33.
    J.G. Chen, J.R. Cheng, J. Am. Ceram. Soc. 99(2), 536–542 (2016)CrossRefGoogle Scholar
  34. 34.
    K. Tong, C.R. Zhou, Q.N. Li, J. Wang, L. Yang, J.W. Xu, G.H. Chen, C.L. Yuan, G.H. Rao, J. Eur. Ceram. Soc. 38(4), 1356–1366 (2018)CrossRefGoogle Scholar
  35. 35.
    Q. Zhou, C.R. Zhou, H.B. Yang, C.L. Yuan, G.H. Chen, L. Cao, Q.L. Fan, J. Mater. Sci.: Mater. Electron. 25(1), 196–201 (2014)Google Scholar
  36. 36.
    M.R. Soares, A.M.R. Senos, P.Q. Mantas, J. Eur. Ceram. Soc. 20(3), 321–334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations