Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis

  • P. Norouzzadeh
  • Kh. MabhoutiEmail author
  • M. M. Golzan
  • R. Naderali


In this work, the results of the structural and dielectric investigation of pure, Mn-doped, and Ni-doped ZnO nanoparticles (NPs), which have been prepared by simple sol–gel method using zinc acetate as precursor, are studied. The synthesized samples are examined via XRD at 300 K, FE-SEM, FTIR, and μ Autolab/FRA2 impedance spectroscopy techniques. XRD results and calculated lattice parameters of all synthesized samples have revealed that diffraction peaks are well matched to the JCPDS card No. 036-1451. FE-SEM obtained images confirm the formation of NPs. The FTIR graphs exhibit the characteristics transmittance peaks at 510.01 cm−1, 514.36 cm−1, and 509.43 cm−1 for pure, Mn-doped, and Ni-doped ZnO, respectively. This technique also authenticates the existence of ZnO NPs and doped ones. The dielectric measurements of all synthesized samples have been done in the ranges of 10−3 to 106 Hz. Dielectric investigations reveal that the size of the NPs and dopant type have a great effect on the dielectric manner of samples. The obtained experimental results exhibit that the dielectric constant, loss tangent, electric modulus, and AC electrical conductivity parameters have intense frequency dependence. AC conductivity increases with frequency increment but decreases with doping, making it a potential option for device applications. In principle, an increment in capacitance and dielectric constants values has caused a decrement in frequency, while on the contrary, frequency increasing exhibits an increment of the AC electrical conductivity and electric modulus values. Finally, the magnetic studies extracted from electrical measurement are investigated.



  1. 1.
    A. Koo, R. Yoo, S.P. Woo, H.-S. Lee, W. Lee, Sens. Actuators B Chem. 280, 109 (2019)CrossRefGoogle Scholar
  2. 2.
    C. Madhu, I. Kaur, N. Kaur, J. Mater. Sci. 29, 7785 (2018)Google Scholar
  3. 3.
    P. Meng, X. Zhao, Z. Fu, J. Wu, J. Hu, J. He, J. Alloys Compd. 789, 948 (2019)CrossRefGoogle Scholar
  4. 4.
    X. Suo, S. Zhao, Y. Ran, H. Liu, Z. Jiang, Y. Li, Z. Wang, Surf. Coat. Technol. 357, 978 (2019)CrossRefGoogle Scholar
  5. 5.
    A. Ulyankina, I. Leontyev, M. Avramenko, D. Zhigunov, N. Smirnova, Mater. Sci. Semicond. Process. 76, 7 (2018)CrossRefGoogle Scholar
  6. 6.
    V.D. Mote, Y. Purushotham, B.N. Dole, Mater. Des. 96, 99 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Guo, Q. Hou, C. Zhao, Y. Zhang, Chem. Phys. Lett. 614, 15 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Nasser, W.B.H. Othmen, H. Elhouichet, Ceram. Int. 45, 8000 (2019)CrossRefGoogle Scholar
  9. 9.
    B. Hartiti, M. Siadat, E. Comini, H.M.M.M. Arachchige, S. Fadili, P. Thevenin, J. Mater. Sci. 30, 7681 (2019)Google Scholar
  10. 10.
    D. Sharma, R. Jha, J. Alloys Compd. 698, 532 (2017)CrossRefGoogle Scholar
  11. 11.
    N.X. Sang, N.M. Quan, N.H. Tho, N.T. Tuan, T.T. Tung, Semicond. Sci. Technol. 34, 25013 (2019)CrossRefGoogle Scholar
  12. 12.
    C. Belkhaoui, R. Lefi, N. Mzabi, H. Smaoui, J. Mater. Sci. 29, 7020 (2018)Google Scholar
  13. 13.
    A. Zia, S. Ahmed, N.A. Shah, M. Anis-ur-Rehman, E.U. Khan, M. Basit, Phys. B Condens. Matter 473, 42 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Ravichandran, K. Karthika, B. Sakthivel, N.J. Begum, S. Snega, K. Swaminathan, V. Senthamilselvi, J. Magn. Magn. Mater. 358, 50 (2014)CrossRefGoogle Scholar
  15. 15.
    K.P. Shinde, R.C. Pawar, B.B. Sinha, H.S. Kim, S.S. Oh, K.C. Chung, Ceram. Int. 40, 16799 (2014)CrossRefGoogle Scholar
  16. 16.
    S.M. Mousavi, A.R. Mahjoub, R. Abazari, J. Mol. Liq. 242, 512 (2017)CrossRefGoogle Scholar
  17. 17.
    S. Aksoy, Y. Caglar, J. Alloys Compd. 781, 929 (2019)CrossRefGoogle Scholar
  18. 18.
    S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Güell, M. Kumar, K. Awasthi, Sens. Actuators B Chem. 292, 24 (2019)CrossRefGoogle Scholar
  19. 19.
    D. Richard, M. Romero, R. Faccio, Ceram. Int. 44, 703 (2018)CrossRefGoogle Scholar
  20. 20.
    G. Vijayaprasath, R. Murugan, T. Mahalingam, G. Ravi, J. Mater. Sci. 26, 7205 (2015)Google Scholar
  21. 21.
    Y. Mao, Y. Li, Y. Zou, X. Shen, L. Zhu, G. Liao, Ceram. Int. 45, 1724 (2019)CrossRefGoogle Scholar
  22. 22.
    D. Klauson, I. Gromyko, T. Dedova, N. Pronina, M. Krichevskaya, O. Budarnaja, I.O. Acik, O. Volobujeva, I. Sildos, K. Utt, Mater. Sci. Semicond. Process. 31, 315 (2015)CrossRefGoogle Scholar
  23. 23.
    H.M. Chenari, M.M. Golzan, H. Sedghi, A. Hassanzadeh, M. Talebian, Curr. Appl. Phys. 11, 1071 (2011)CrossRefGoogle Scholar
  24. 24.
    O. S. Heavens, Thin Film Physics (Methuen, 1970)Google Scholar
  25. 25.
    Y. Liu, H. Liu, Z. Chen, N. Kadasala, C. Mao, Y. Wang, Y. Zhang, H. Liu, Y. Liu, J. Yang, J. Alloys Compd. 604, 281 (2014)CrossRefGoogle Scholar
  26. 26.
    A.H. Bahrami, H. Ghayour, S. Sharafi, Powder Technol. 249, 7 (2013)CrossRefGoogle Scholar
  27. 27.
    S.O. Gashti, A. Fattah-Alhosseini, Y. Mazaheri, M.K. Keshavarz, J. Alloys Compd. 688, 44 (2016)CrossRefGoogle Scholar
  28. 28.
    T. Debnath, P. Saha, N. Patra, S. Das, S. Sutradhar, J. Appl. Phys. 123, 194101 (2018)CrossRefGoogle Scholar
  29. 29.
    G. Kafili, A. Alhaji, Adv. Powder Technol. 30, 1108 (2019)CrossRefGoogle Scholar
  30. 30.
    P. Shukla, J.K. Shukla, J. Supercond. Nov. Magn. 32, 721 (2019)CrossRefGoogle Scholar
  31. 31.
    D. Anbuselvan, S. Muthukumaran, Opt. Mater. (Amst). 42, 124 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Robles-Águila, J. Luna-López, Á. Hernández de la Luz, J. Martínez-Juárez, M. Rabanal, Crystals 8, 406 (2018)CrossRefGoogle Scholar
  33. 33.
    P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, Ceram. Int. 40, 13115 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Srinet, R. Kumar, V. Sajal, J. Appl. Phys. 114, 33912 (2013)CrossRefGoogle Scholar
  35. 35.
    B. Manikandan, T. Endo, S. Kaneko, K.R. Murali, R. John, J. Mater. Sci. 29, 9474 (2018)Google Scholar
  36. 36.
    R. Gopalakrishnan, S. Muthukumaran, J. Mater. Sci. 24, 1069 (2013)Google Scholar
  37. 37.
    Y.-M. Hao, S.-Y. Lou, S.-M. Zhou, R.-J. Yuan, G.-Y. Zhu, N. Li, Nanoscale Res. Lett. 7, 100 (2012)CrossRefGoogle Scholar
  38. 38.
    M.F. Khan, A.H. Ansari, M. Hameedullah, E. Ahmad, F.M. Husain, Q. Zia, U. Baig, M.R. Zaheer, M.M. Alam, A.M. Khan, Sci. Rep. 6, 27689 (2016)CrossRefGoogle Scholar
  39. 39.
    R. Siddheswaran, M. Netrvalová, J. Savková, P. Novák, J. Očenášek, P. Šutta, J. Kováč Jr., R. Jayavel, J. Alloys Compd. 636, 85 (2015)CrossRefGoogle Scholar
  40. 40.
    S. Fabbiyola, V. Sailaja, L.J. Kennedy, M. Bououdina, J.J. Vijaya, J. Alloys Compd. 694, 522 (2017)CrossRefGoogle Scholar
  41. 41.
    A. Samanta, M.N. Goswami, P.K. Mahapatra, J. Alloys Compd. 730, 399 (2018)CrossRefGoogle Scholar
  42. 42.
    F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, B.H. Koo, RSC Adv. 4, 29249 (2014)CrossRefGoogle Scholar
  43. 43.
    A. Yildiz, B. Yurduguzel, B. Kayhan, G. Calin, M. Dobromir, F. Iacomi, J. Mater. Sci. 23, 425 (2012)Google Scholar
  44. 44.
    K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940 (2016)CrossRefGoogle Scholar
  45. 45.
    Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, Process. Appl. Ceram. 10, 125 (2016)CrossRefGoogle Scholar
  46. 46.
    A. Goswami, A.P. Goswami, Thin Solid Films 16, 175 (1973)CrossRefGoogle Scholar
  47. 47.
    H.M. Chenari, A. Hassanzadeh, M.M. Golzan, H. Sedghi, M. Talebian, Curr. Appl. Phys. 11, 409 (2011)CrossRefGoogle Scholar
  48. 48.
    F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, New York, 2012)Google Scholar
  49. 49.
    A. Tataroglu, Ş. Altındal, M.M. Bülbül, Microelectron. Eng. 81, 140 (2005)CrossRefGoogle Scholar
  50. 50.
    I. Khan, S. Khan, W. Khan, Mater. Sci. Semicond. Process. 26, 516 (2014)CrossRefGoogle Scholar
  51. 51.
    M.M. El-Nahass, H.A.M. Ali, Solid State Commun. 152, 1084 (2012)CrossRefGoogle Scholar
  52. 52.
    A. Tabib, N. Sdiri, H. Elhouichet, M. Férid, J. Alloys Compd. 622, 687 (2015)CrossRefGoogle Scholar
  53. 53.
    A. Azam, A.S. Ahmed, M.S. Ansari, A.H. Naqvi, J. Alloys Compd. 506, 237 (2010)CrossRefGoogle Scholar
  54. 54.
    S. Khera, P. Chand, Chin. J. Phys. 57, 28 (2019)CrossRefGoogle Scholar
  55. 55.
    R. Khan, S. Fashu, J. Mater. Sci.: Mater. Electron. 28, 4333 (2017)Google Scholar
  56. 56.
    M. Ashokkumar, S. Muthukumaran, J. Magn. Magn. Mater. 374, 61 (2015)CrossRefGoogle Scholar
  57. 57.
    D. Varshney, S. Dwivedi, Mater. Res. Express 2, 106102 (2015)CrossRefGoogle Scholar
  58. 58.
    M. Ashokkumar, S. Muthukumaran, J. Lumin. 162, 97 (2015)CrossRefGoogle Scholar
  59. 59.
    C.-H. Ho, C.-D. Liu, C.-H. Hsieh, K.-H. Hsieh, S.-N. Lee, Synth. Met. 158, 630 (2008)CrossRefGoogle Scholar
  60. 60.
    R. Zamiri, B. Singh, I. Bdikin, A. Rebelo, M.S. Belsley, J.M.F. Ferreira, Solid State Commun. 195, 74 (2014)CrossRefGoogle Scholar
  61. 61.
    M. Kaddes, K. Omri, N. Kouaydi, M. Zemzemi, Appl. Phys. A 124, 518 (2018)CrossRefGoogle Scholar
  62. 62.
    M.D.P. Ahmad, A.V. Rao, K.S. Babu, G.N. Rao, Mater. Chem. Phys. 224, 79 (2019)CrossRefGoogle Scholar
  63. 63.
    D. K. Cheng, Field and Wave Electromagnetics (Pearson Education India, 1989)Google Scholar
  64. 64.
    J.E. Jaffe, R. Pandey, A.B. Kunz, Phys. Rev. B 43, 14030 (1991)CrossRefGoogle Scholar
  65. 65.
    V. Pazhanivelu, A.P.B. Selvadurai, R. Kannan, R. Murugaraj, Phys. B Condens. Matter 487, 102 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of SciencesUrmia UniversityUrmiaIran

Personalised recommendations