Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21388–21397 | Cite as

ZIF-derived Co nanoparticle/N-doped CNTs composites embedded in N-doped carbon substrate as efficient electrocatalyst for hydrogen and oxygen evolution

  • Hongjie Li
  • Yi HeEmail author
  • Teng He
  • Siming Yan
  • Xiaoyu Ma
  • Jingyu ChenEmail author
Article
  • 68 Downloads

Abstract

Herein, we report a bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by pyrolysis of zeolitic imidazolate framework-67 (ZIF-67), melamine, and PVP composites solid gel. During the pyrolysis, ZIF-67 formed N and Co co-doped carbon nanotubes on the surface (Co@CNT/NC), melamine and PVP have been converted into N-doped carbon (NC) substrate. Our Co@CNT/NC composites display the overpotential of HER and OER at current density of 10 mA cm−2 only need 136 mV and 280 mV, respectively. The synergistic effect of catalytic active sites such as metallic Co, Co–N bond, and N-doped carbon, and the large specific surface area caused by special morphology of the materials, enabled the catalysts to exhibit superior catalytic performance of HER and OER. The work provides a new idea to construct highly efficient HER and OER dual-functional electrocatalysts.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51774245), Applied Basic Research Projects of Science and Technology Department of Sichuan Province (No. 2018JY0517), Science and Technology Support Project of Sichuan Province (2015RZ0023), Open Fund (PLN201806) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Youth science and technology creative group fund of Southwest Petroleum University (2015CXTD03), and Research Center of Energy polymer materials of Southwest Petroleum University and Chengdu Ceshigo Research Service Co., Ltd (http://www.ceshigo.com/).

Compliance with ethical standards

Conflict and interest

There are no conflicts to declare.

Supplementary material

10854_2019_2516_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1543 kb)

References

  1. 1.
    J.A. Turner, Science 305, 972–974 (2004)Google Scholar
  2. 2.
    S. Dunn, Int. J. Hydrogen Energy 27, 235–264 (2002)Google Scholar
  3. 3.
    T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Int. J. Hydrogen Energy 27, 991–1022 (2002)Google Scholar
  4. 4.
    D.R. Gamelin, Nat. Chem. 4, 965–967 (2012)Google Scholar
  5. 5.
    M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446–6473 (2010)Google Scholar
  6. 6.
    F. Emiliana, T.J. Schmidt, ACS Catal. 8, 9765–9774 (2018)Google Scholar
  7. 7.
    W.S. Zhi, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Science 355, 4998 (2017)Google Scholar
  8. 8.
    T. Kevin, Z.W. Ulissi, Nat. Catal. 1, 696–703 (2018)Google Scholar
  9. 9.
    J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Nat. Chem. 1, 37–46 (2009)Google Scholar
  10. 10.
    P. Balaya, H. Li, L. Kienle, J. Maier, Adv. Funct. Mater. 13, 621–625 (2010)Google Scholar
  11. 11.
    Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 3, 399–404 (2015)Google Scholar
  12. 12.
    H. Over, Y.D. Kim, A.P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante, G. Ertl, Science 287, 1474–1476 (2000)Google Scholar
  13. 13.
    N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, Nat. Commun. 7, 13638 (2016)Google Scholar
  14. 14.
    B.Z. Zhan, M.A. White, T.K. Sham, J.A. Pincock, T.S. Cameron, J. Am. Chem. Soc. 125, 2195–2199 (2003)Google Scholar
  15. 15.
    R. Kötz, H.J. Lewerenz, S. Stucki, J. Electrochem. Soc. 130, 825 (1983)Google Scholar
  16. 16.
    R. Kötz, S. Stucki, Electrochim. Acta 31, 1311–1316 (1986)Google Scholar
  17. 17.
    E. Skúlason, G.S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jónsson, J.K. Nørskov, Phys. Chem. Chem. Phys. 9, 3241–3250 (2007)Google Scholar
  18. 18.
    D.V. Esposito, S.T. Hunt, A.L. Stottlemyer, K.D. Dobson, J.G. Chen, Angew. Chem. Int. Ed. 49, 9787 (2015)Google Scholar
  19. 19.
    J. Wang, Y. He, Q. Yang, H. Li, Z. Xie, Y. Fan, J. Chen, Int. J. Hydrogen Energy 44, 13205–13213 (2019)Google Scholar
  20. 20.
    Q. Yang, Y. He, Y. Fan, F. Li, X. Chen, J. Mater. Sci. 28, 7413–7418 (2017)Google Scholar
  21. 21.
    Q. Yang, Y. He, Y. Fan, X. Chen, Y. Li, Int. J. Hydrogen Energy 42, 6482–6489 (2016)Google Scholar
  22. 22.
    Q. Yang, H. Yi, Z. Changjun, W. Jizhuang, L. Hongjie, Q. Dayong, J. Solid State Electron. 22, 1–8 (2018)Google Scholar
  23. 23.
    S. Hussain, N. Ullah, Y. Zhang, N. Aslam, A. Shaheen, M.S. Javed, M. Wang, G. Liu, G. Qiao, J. Mater. Sci. 2, 105–127 (2019)Google Scholar
  24. 24.
    C. Liu, W. Ke, Z. Jin, X. Zheng, L. Qian, Z. Chen, J. Mater. Sci. 29, 10744–10752 (2018)Google Scholar
  25. 25.
    J. Zhou, L. Yundan, Z. Zhen, L. Jun, Q. Xiang, J. Mater. Sci. 29, 12300–12305 (2018)Google Scholar
  26. 26.
    H. Li, Y. He, Q. Yang, J. Wang, S. Yan, C. Chen, J. Chen, J. Solid State Chem. 278, 120843 (2019)Google Scholar
  27. 27.
    M.Q. Wang, C. Ye, H. Liu, M. Xu, S.J. Bao, Angew. Chem. Int. Ed. 130, 1963–1967 (2018)Google Scholar
  28. 28.
    S. Huang, Y. Meng, S. He, A. Goswami, M. Wu, Adv. Funct. Mater. 27, 1606585 (2017)Google Scholar
  29. 29.
    C. Hu, L. Dai, Adv. Mater. 29, 1604942 (2017)Google Scholar
  30. 30.
    X. Zhang, R. Liu, Y. Zang, G. Liu, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Chem. Commun. 52, 5946–5949 (2016)Google Scholar
  31. 31.
    L. Zhang, W. Liu, W. Shi, X. Xu, J. Mao, P. Li, C. Ye, R. Yin, S. Ye, X. Liu, X. Cao, C. Gao, Chemistry 24, 13792–13799 (2018)Google Scholar
  32. 32.
    Z. Peng, Y. Yu, D. Jiang, Y. Wu, B.Y. Xia, Z. Dong, Carbon 144, 464–471 (2019)Google Scholar
  33. 33.
    H. Han, S. Chao, X. Yang, X. Wang, K. Wang, Z. Bai, L. Yang, Int. J. Hydrogen Energy 42, 16149–16156 (2017)Google Scholar
  34. 34.
    J. Wang, W. Liu, G. Luo, Z. Li, Y. Li, Energy Environ. Sci. 11, 3375–3379 (2019)Google Scholar
  35. 35.
    K. Wang, C. Liu, W. Wang, N. Mitsuzaki, Z. Chen, J. Mater. Sci. 30, 4144–4151 (2019)Google Scholar
  36. 36.
    F. Cui, W. Chen, L. Jin, H. Zhang, Z. Jiang, Z. Song, J. Mater. Sci. 23, 19697–19709 (2019)Google Scholar
  37. 37.
    S. Guo, Y. Yang, N. Liu, Q. Shi, H. Huang, Y. Liu, Z. Kang, Sci. Bull. 61, 68–77 (2016)Google Scholar
  38. 38.
    H. Guo, Q. Feng, J. Zhu, J. Xu, Q. Li, S. Liu, K. Xu, C. Zhang, T. Liu, J. Mater. Chem. A. 7, 3664–3672 (2019)Google Scholar
  39. 39.
    M. Xiao, Y. Meng, C. Duan, F. Zhu, Y. Zhang, J. Mater. Sci. 30, 6148–6156 (2019)Google Scholar
  40. 40.
    B. Marcin, C. Xuecheng, M. Ewa, ChemElectroChem. 5, 2681–2685 (2018)Google Scholar
  41. 41.
    S. Yang, M. Xie, L. Chen, W. Wei, X. Lv, Y. Xu, N. Ullah, O.C. Judith, Y.B. Adegbemiga, J. Xie, Int. J. Hydrogen Energy 44, 4543–4552 (2019)Google Scholar
  42. 42.
    L. Hu, Y. Hu, R. Liu, Y. Mao, M.S. Balogun, Y. Tong, Int. J. Hydrogen Energy 44, 11402–11410 (2019)Google Scholar
  43. 43.
    B. Chen, G. Ma, Y. Zhu, Y. Xia, Sci. Rep. 7, 5266 (2017)Google Scholar
  44. 44.
    X. Li, J. Wei, Q. Li, S. Zheng, Y. Xu, P. Du, C. Chen, J. Zhao, H. Xue, Q. Xu, Adv. Funct. Mater. 28, 1800886 (2018)Google Scholar
  45. 45.
    S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Ed. 55, 1830–1834 (2016)Google Scholar
  46. 46.
    C. Gumeci, N. Leonard, Y. Liu, S. McKinney, B. Halevi, S.C. Barton, J. Mater. Chem. A 3, 21494–21500 (2015)Google Scholar
  47. 47.
    Z. Sun, F. Huang, Y. Sui, F. Wei, J. Qi, Q. Meng, H. Hu, Y. He, J. Mater. Sci. 28, 14019–14025 (2017)Google Scholar
  48. 48.
    S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, J. Colloid Interface Sci. 531, 83–90 (2018)Google Scholar
  49. 49.
    R.M. Abdelhameed, H.E. Emam, J Colloid Interf Sci. 552, 494–505 (2019)Google Scholar
  50. 50.
    R.M. Abdelhameed, M. El-Shahat, J. Environ. Chem. Eng. 7, 103194 (2019)Google Scholar
  51. 51.
    Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 140, 2610–2618 (2018)Google Scholar
  52. 52.
    B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, Nat. Energy. 1, 15006 (2016)Google Scholar
  53. 53.
    Z. Xie, Y. Wang, Electrochim. Acta 296, 372–378 (2019)Google Scholar
  54. 54.
    L. Jiao, Y.X. Zhou, H.L. Jiang, Chem. Sci. 7, 1690–1695 (2016)Google Scholar
  55. 55.
    C.-Z. Yuan, S.-L. Zhong, Y.-F. Jiang, Z.K. Yang, Z.-W. Zhao, S.-J. Zhao, N. Jiang, A.-W. Xu, J. Mater. Chem. A. 5, 10561–10566 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Lab of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)ChengduChina
  2. 2.College of Chemistry and Chemical EngineeringSouthwest Petroleum UniversityChengduChina
  3. 3.Institute for Frontier MaterialsDeakin UniversityGeelongAustralia

Personalised recommendations