Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21343–21354 | Cite as

Silver frameworks based on self-sintering silver micro-flakes and its application in low temperature curing conductive pastes

  • Haijiao Zhan
  • Jiayu GuoEmail author
  • Xiazhen Yang
  • Bing Guo
  • Wei Liu
  • Hangyan Shen
  • Xiaorong Wang
  • Weigang Tang
  • Fei Chen
Article
  • 56 Downloads

Abstract

There is a growing demand for silver pastes and inks used in the field of printed electronics. The synthesis of organic surfactant stabilized silver micro-flakes by the solution-phase chemical reduction method at room temperature has attracted wide attention due to its simple equipment, convenient operation and affordable price. However, the electrical conductivity of silver micro-flakes-filled conductive pastes and inks are significantly influenced by residual surfactants. Therefore, the surface modification of silver micro-flakes to remove surface adsorbents becomes a key issue. In this study, the silver frameworks based on the self-sintering silver micro-flakes at room temperature are developed for silver pastes with excellent conductivity. The silver paste with 48 wt% of the sodium nitrate and succinic acid treated silver powders has a resistivity of 1.08 × 10−6 Ω m and excellent adhesion strength after being cured at 140 °C in an oven.

Notes

Acknowledgments

This work is partially supported by the Natural Science Foundation of Zhejiang (LY16F050005) and the Major Research and Development Project of Zhejiang Province (2018C01123).

References

  1. 1.
    A. Kamyshny, S. Magdassi, Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem. Soc. Rev. 48, 1712–1740 (2019)Google Scholar
  2. 2.
    C. Li, S. Bolisetty, R. Mezzenga, Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties. Adv. Mater. 25(27), 3694–3700 (2013)Google Scholar
  3. 3.
    X.H. Bai, W. Li, X.S. Du, P. Zhang, Z.D. Lin, Synthesis of spherical silver particles with micro/nanostructures at room temperature. Compos. Commun. 4, 54–58 (2017)Google Scholar
  4. 4.
    X. Liu, Z. Zheng, C. Wang, W. Liu, L. Kong, Effects of temperature and dispersants on the phases and morphology of Ag-Cu nanoparticles. J. Mater. Sci.: Mater. Electron. 27(10), 10065–10069 (2016)Google Scholar
  5. 5.
    B. An, M. Li, J. Wang, C. Li, Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals. Front. Chem. Sci. Eng. 10(3), 360–382 (2016)Google Scholar
  6. 6.
    S.K. Tam, K.M. Ng, High-concentration copper nanoparticles synthesis process for screen-printing conductive paste on flexible substrate. J. Nanopart. Res. 17, 466 (2015)Google Scholar
  7. 7.
    W. Wu, K.E. Roelofs, S. Subramoney, K. Lloyd, L. Zhang, Role of aluminum in silver paste contact to boron-doped silicon emitters. AIP Adv. 7(1), 015306 (2017)Google Scholar
  8. 8.
    R.W. Wu, L.C. Tsao, R.S. Chen, Effect of 0.5 wt% nano-TiO2 addition into low-Ag Sn0.3Ag0.7Cu solder on the intermetallic growth with Cu substrate during isothermal aging. J. Mater. Sci.: Mater. Electron. 26(3), 1–8 (2015)Google Scholar
  9. 9.
    J.Y. Guo, B. Hua, G.D. Qian, M.Q. Wang, J.H. Si, J.R. Qiu, K. Hirao, Direct space selective precipitation of silver nanoparticles inside silicate glasses through local heating of erbium. J. Alloys Compd. 468(1–2), 563–565 (2009)Google Scholar
  10. 10.
    K. Lee, B. Jun, T. Kim, J. Joung, Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology 17, 2424–2428 (2006)Google Scholar
  11. 11.
    Z. Li, R. Zhang, K. Moon, Y. Liu, K. Hansen, T. Le, C.P. Wong, Highly conductive, flexible, polyurethane-based adhesives for flexible and printed electronics. Adv. Funct. Mater. 23, 1459–1465 (2013)Google Scholar
  12. 12.
    Y. Wang, Y. Zheng, C.Z. Huang, Y. Xia, Synthesis of Ag nanocubes 18–32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility. J. Am. Chem. Soc. 135(5), 1941–1951 (2013)Google Scholar
  13. 13.
    Z.P. Cheng, X.Z. Chu, X.Q. Wu, J.M. Xu, H. Zhong, J.Z. Yin, Controlled synthesis of silver nanoplates and nanoparticles by reducing silver nitrate with hydroxylamine hydrochloride. Rare Met. 36(10), 799–805 (2017)Google Scholar
  14. 14.
    H. Chen, E. Kern, C. Ziegler, A. Eychmüller, Ultrasonically assisted synthesis of 3D hierarchical silver microstructures. J. Phys. Chem. C 113(44), 19258–19262 (2009)Google Scholar
  15. 15.
    T. Liu, D. Li, D. Yang, M. Jiang, Fabrication of flower-like silver structures through anisotropic growth. Langmuir 27(10), 6211 (2011)Google Scholar
  16. 16.
    X. Xu, Y. Wang, H. Wang, H. Su, X. Mao, L. Jiang, M. Liu, D. Sun, S. Hou, Synthesis of triangular silver nanoprisms and studies on the interactions with human serum albumin. J. Mol. Liq. 220, 14–20 (2016)Google Scholar
  17. 17.
    P.S. Mukherjee, A.K. Das, B. Dutta, A.K. Meikap, Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film. J. Phys. Chem. Solids 111, 266–273 (2017)Google Scholar
  18. 18.
    Q. Zhu, Z. Zhang, Z. Sun, B. Cai, W. Cai, Importance of cations and anions from control agents in the synthesis of silver nanowires by polyol method. Appl. Phys. A 122, 618 (2016)Google Scholar
  19. 19.
    T.C. Deivaraj, N.L. Lala, J.Y. Lee, Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods. J. Colloid Interface Sci. 289(2), 402–409 (2005)Google Scholar
  20. 20.
    P.S. Hwa, S.J. Gyeong, L.T. Geol, P.H. Min, S.J. Yong, One-step large-scale synthesis of micrometer-sized silver nanosheets by a template-free electrochemical method. Nanoscale Res. Lett. 8(1), 1–6 (2013)Google Scholar
  21. 21.
    T. Darmanin, P. Nativo, D. Gilliland, G. Ceccone, C. Pascual, B. De Berardis, F. Guittard, F. Rossi, Microwave-assisted synthesis of silver nanoprisms/nanoplates using a “modified polyol process”. Colloids Surf. A 395, 145–151 (2012)Google Scholar
  22. 22.
    J. Du, B. Han, Z. Liu, Y. Liu, D.J. Kang, Control synthesis of silver nanosheets, chainlike sheets, and microwires via a simple solvent − thermal method. Cryst. Growth Des. 7(5), 900–904 (2007)Google Scholar
  23. 23.
    Q. Li, S. Liu, S. Li, W. Guo, C. Wu, Preparation of micro-size flake silver powder by planetary ball mill. J. Mater. Sci.: Mater. Electron. 27, 452–457 (2016)Google Scholar
  24. 24.
    B. An, X.H. Cai, F.S. Wu, Y.P. Wu, Preparation of micro-sized and uniform spherical Ag powders by novel wet-chemical method. Trans. Nonferrous Met. Soc. China 20(8), 1550–1554 (2010)Google Scholar
  25. 25.
    M.H. Kim, S.K. Kwak, S.H. Im, J.B. Lee, K.Y. Choi, D.J. Byun, Maneuvering the growth of silver nanoplates: use of halide ions to promote vertical growth. J. Mater. Chem. C 2(30), 6165–6170 (2014)Google Scholar
  26. 26.
    Y. Xiong, J.M. McLellan, J. Chen, Y. Yin, Z. Li, Y. Xia, Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am. Chem. Soc. 127(48), 17118–17127 (2005)Google Scholar
  27. 27.
    J. Yang, Q. Zhang, J.Y. Lee, H.P. Too, Dissolution-recrystallization mechanism for the conversion of silver nanospheres to triangular nanoplates. J. Colloid Interface Sci. 308(1), 157–161 (2007)Google Scholar
  28. 28.
    H. Wang, W. Yang, K. Li, G. Li, The hydrothermal synthesis of ultra-high aspect ratio Ag nanoflakes and their performance as conductive fillers in heaters and pastes. RSC Adv. 8(16), 8937–8943 (2018)Google Scholar
  29. 29.
    X. Guo, D. Deng, Q. Tian, C. Jiao, One-step synthesis of micro-sized hexagon silver sheets by the ascorbic acid reduction with the presence of H2SO4. Adv. Powder Technol. 25(3), 865–870 (2014)Google Scholar
  30. 30.
    S. Monarca, J.K. Hongslo, A. Kringstad, G.E. Carlberg, Mutagenicity and organic halogen determination in body fluids and tissues of rats treated with drinking water and pulp mill bleachery effuent concentrates. Chemosphere 13(12), 1271–1281 (1984)Google Scholar
  31. 31.
    A. Shahzad, J. Chung, T.J. Lee, Y.H. Kim, S.H. Bhang, W.S. Kim, T. Yu, A facile room temperature synthesis of large silver nanoplates with low cytotoxicity. Chem. Sel. 3, 1801–1808 (2018)Google Scholar
  32. 32.
    G. Hu, W. Jin, W. Zhang, K. Wu, J. He, Y. Zhang, Q. Chen, W. Zhang, Surfactant-assisted shape separation from silver nanoparticles prepared by a seed-mediated method. Colloids Surf. A 540, 136–142 (2018)Google Scholar
  33. 33.
    S. Guo, W. Fang, Y. Li, Y. Yang, C. Wang, X. Meng, Y. Chao, H. Yang, Synthesis and formation mechanism of micron-size silver flakes with high radius-thickness ratio: application to silver paste. J. Mater. Sci.: Mater. Electron. 28(21), 16267–16273 (2017)Google Scholar
  34. 34.
    L. Yu, Y. Zhang, Preparation of nano-silver flake by chemical reduction method. Rare Met. Mater. Eng. 39(3), 401–404 (2010)Google Scholar
  35. 35.
    Y. Fan, Y. Ren, M. Wu, Y. Fang, Self-seeding synthesis of silver nanosheets with binary reduction in poly(vinylpyrrolidone)-sodium dodecyl sulphate aggregation microreactor. Micro & Nano Lett. 9(10), 726–730 (2014)Google Scholar
  36. 36.
    H.M. Ren, Y. Guo, S.Y. Huang, K. Zhang, M.M. Yuen, X.Z. Fu, S. Yu, R. Sun, C.P. Wong, One-step preparation of silver hexagonal microsheets as electrically conductive adhesive fillers for printed electronics. ACS Appl. Mater. Interfaces. 7(24), 13685–13692 (2015)Google Scholar
  37. 37.
    Q. Zhang, N. Li, J. Goebl, Z. Lu, Y. Yin, A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J. Am. Chem. Soc. 133, 18931–18939 (2011)Google Scholar
  38. 38.
    T. Parnklang, B. Lamlua, H. Gatemala, C. Thammacharoen, S. Kuimalee, B. Lohwongwatana, S. Ekgasit, Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide. Mater. Chem. Phys. 153, 127–134 (2015)Google Scholar
  39. 39.
    J. Perelaer, C.E. Hendriks, A.W. de Laat, U.S. Schubert, One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20(16), 165303 (2009)Google Scholar
  40. 40.
    H.S. Kim, S.R. Dhage, D.E. Shim, H.T. Hahn, Intense pulsed light sintering of copper nanoink for printed electronics. Appl. Phys. A 97(4), 791 (2009)Google Scholar
  41. 41.
    J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20(39), 8446–8453 (2010)Google Scholar
  42. 42.
    Y. Jo, S.J. Oh, S. Lee, Y.H. Seo, B.H. Ryu, J. Moon, Y. Choi, S. Jeong, Extremely flexible, printable Ag conductive features on PET and paper substrates via continuous millisecond photonic sintering in a large area. J. Mater. Chem. C 2(45), 9746–9753 (2014)Google Scholar
  43. 43.
    M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen, H. Seppä, Electrical sintering of nanoparticle structures. Nanotechnology 19(17), 175201 (2008)Google Scholar
  44. 44.
    Y.J. Lee, N.R. Kim, C. Lee, H.M. Lee, Uniform thin film electrode made of low-temperature-sinterable silver nanoparticles: optimized extent of ligand exchange from oleylamine to acrylic acid. J. Nanopart. Res. 19(2), 32 (2017)Google Scholar
  45. 45.
    A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J.M. Kikkawa, C.B. Murray, A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133(4), 998–1006 (2010)Google Scholar
  46. 46.
    J.F. Zhu, H. Jin, M.B. Zhou, X.P. Zhang, Electrical property of electrically conductive adhesives filled with micro-sized Ag flakes and modified by dicarboxylic acids. International Conference on Electronic Packaging Technology (2016), pp. 923–926Google Scholar
  47. 47.
    M. Grouchko, A. Kamyshny, C.F. Mihailescu, F.A. Dan, S. Magdassi, Conductive inks with a “Built-In” mechanism that enables sintering at room temperature. ACS Nano 5(4), 3354–3359 (2011)Google Scholar
  48. 48.
    H. Cui, Q. Fan, D. Li, Surface functionalization of micro silver flakes and their application in electrically conductive adhesives for electronic package. Int. J. Adhes. Adhes. 48, 177–182 (2014)Google Scholar
  49. 49.
    X. Li, J.J. Lenhart, H.W. Walker, Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26(22), 16690–16698 (2010)Google Scholar
  50. 50.
    A. Zhai, X. Cai, B. Du, A novel wet-chemical method for preparation of silver flakes. Trans. Nonferrous Met. Soc. China 24(5), 1452–1457 (2014)Google Scholar
  51. 51.
    ASTM D 3359-02, Standard Test Methods for Measuring Adhesion by Tape Test (ASTM Standards, ASTM, Philadelphia, 2002)Google Scholar
  52. 52.
    M.M. Barbooti, D.A. Al-Sammerrai, Thermal decomposition of citric acid. Thermochim. Acta 98(98), 119–126 (1986)Google Scholar
  53. 53.
    J.R. Greer, R.A. Street, Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Mater. 55(18), 6345–6349 (2007)Google Scholar
  54. 54.
    J.K. Luke, D.F. Phillip, V.B. Wilhelm, In situ FTIR-ATR examination of poly(acrylic acid) adsorbed onto hematite at low pH. Langmuir 19(14), 5802–5807 (2003)Google Scholar
  55. 55.
    Y. Sun, D. Wang, J. Gao, Z. Zheng, Q. Zhang, Synthesis of silver (nano)particle under hyperbranched poly(amido amine)s. J. Appl. Polym. Sci. 103(6), 3701–3705 (2010)Google Scholar
  56. 56.
    K.D. Dobson, A.J. Mcquillan, In situ infrared spectroscopic analysis of the adsorption of aromatic carboxylic acids to TiO2, ZrO2, Al2O3, and Ta2O5 from aqueous solutions. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 56(3), 557–565 (2000)Google Scholar
  57. 57.
    M. Badertscher, P. Bühlmann, E. Pretsch, Structure Determination of Organic Compounds, vol. 22(22) (Springer, Berlin, 2009), pp. 355–360Google Scholar
  58. 58.
    S. Lin, S. Nagao, E. Yokoi, C. Oh, H. Zhang, Y. Liu, S. Lin, K. Suganuma, Nano-volcanic eruption of silver. Sci. Rep. 6, 34769 (2016)Google Scholar
  59. 59.
    C. Chen, K. Suganuma, Microstructure and mechanical properties of sintered Ag particles with flake and spherical shape from nano to micro size. Mater. Des. 162, 311–321 (2019)Google Scholar
  60. 60.
    C. Li, Q. Li, X. Long, T. Li, J. Zhao, K. Zhang, S.E.J. Zhang, Z. Li, Y. Yao, In situ genaration of photosensitive silver halide for improving the conductivity of electrically conductive adhesives. ACS Appl. Mater. Interfaces. 9(34), 29047–29054 (2017)Google Scholar
  61. 61.
    C. Yang, Y.T. Xie, M.M. Yuen, B. Xu, B. Gao, X. Xiong, C.P. Wong, Silver surface iodination for enhancing the conductivity of conductive composites. Adv. Funct. Mater. 20, 2580–2587 (2010)Google Scholar
  62. 62.
    Y. Xiao, Z.H. Zhang, M. Yang, H.F. Yang, M.Y. Li, Y. Gao, The effect of NaOH on room-temperature sintering of Ag nanoparticles for high-performance flxible electronic application. Mater. Lett. 222, 16–20 (2018)Google Scholar
  63. 63.
    A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Pen-on-paper flexible electronics. Adv. Mater. 23, 3426–3430 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChina Jiliang UniversityHangzhouPeople’s Republic of China
  2. 2.The Institute of Industrial CatalysisZhejiang University of TechnologyHangzhouPeople’s Republic of China
  3. 3.Hangzhou Huaguang Advanced Welding Materials Co., LTDHangzhouPeople’s Republic of China

Personalised recommendations