Dispersivity ferroelectric phase transition of La-doped BaZr0.1Ti0.89Fe0.01O3 ceramics

  • Yun Liu
  • Zhanshen ZhengEmail author
  • Yuanliang Li
  • Kaibiao Xi
  • Yueshan Mi
  • Wenshuo Kang
  • Rujie Zhao


BaZr0.1Ti0.89Fe0.01O3(BZTF)was prepared by sol–gel method using Ba(CH3COO)2, ZrO(NO3)2 and [CH3(CH2)3O]4Ti as crude materials, La2O3 and Fe2O3 as doping materials, changing the amount of dopant and using different sintering temperatures. The influence of La doping on the crystal structure, micro structure and diffuse ferroelectric phase transition of the sample were investigated. XRD results showed that all samples showed a characteristic peak of a single perovskite type. The appropriate doping amount of La3+ can improve the electrical performance of the sample. With the increase in La content, the degree of lattice distortion of the sample increases, causing the Curie temperature to move toward the low temperature. At the same time, the increase in the degree of dispersion of ferroelectric phase transitions can be attributed to the growth of grains and the reduction of long-range ordered domains. When doped with 0.6 mol% La, the sample has the highest degree of dispersivity ferroelectric phase transition, and the dielectric properties is the best:(ε25℃ = 5680, tanδ = 0.044, Tc = 42℃, γ = 1.89).



Here, I would like to thank my mentor Zhanshen Zheng and Yuanliang Li for their detailed and important guidance in the writing of the thesis. They gave me a lot of suggestions and research ideas.


  1. 1.
    C. Pithan, D. Hennings, R. Waser, Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC. Int. J. Appl. Ceram. Tec. 2(1), 1–14 (2005)CrossRefGoogle Scholar
  2. 2.
    Y.H. Song, J.H. Hwang, Y.H. Nan, Effects of Y2O3 on temperature stability of acceptor-doped BaTiO3. Jpn. J. Appl. Phys. 44(3), 1310–1313 (2005)CrossRefGoogle Scholar
  3. 3.
    Y. Sun, H.X. Liu, H. Hao et al., Effect of Na0.5Bi0.5TiO3 on dielectric properties of BaTiO3 based ceramics. Ceram. Int. 38(1), S41–S44 (2012)CrossRefGoogle Scholar
  4. 4.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram. Int. 43, 12822–12827 (2017)CrossRefGoogle Scholar
  5. 5.
    J.Q. Qi, B.B. Liu, H.Y. Tian et al., Dielectric properties of barium zirconate (BZT) ceramics tailored by different donors for high voltage applications. Solid State Sci. 14(10), 1520–1524 (2012)CrossRefGoogle Scholar
  6. 6.
    Z.R. Jia, Z.G. Gao, A.L. Feng, Y. Zhang, C.H. Zhang, G.Z. Nie et al., Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon. Compos. B 176, 107246 (2019)CrossRefGoogle Scholar
  7. 7.
    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102–016106 (2016). CrossRefGoogle Scholar
  8. 8.
    T. Badapanda, S.K. Rout, L.S. Cavalcante et al., Structural and dielectric relaxor properties of yttrium-doped Ba(Zr0.25Ti0.75)O3 ceramics. Mater. Chem. Phys. 121(1–2), 147–153 (2010)CrossRefGoogle Scholar
  9. 9.
    L.X. Li, J.Y. Yu, Y.R. Liu et al., Synthesis and characterization of high performance CaZrO3-doped X8R BaTiO3-based dielectric ceramics. Ceram. Int. 41(7), 8696–8701 (2015)CrossRefGoogle Scholar
  10. 10.
    P.R. Ren, Q. Wang, X. Wang et al., Effects of doping sites on electrical properties of yttrium doped BaTiO3. Mater. Lett. 174(1), 197–200 (2016)CrossRefGoogle Scholar
  11. 11.
    Q. Xu, D. Zhan, H.X. Liu et al., Evolution of dielectric properties in BaZrxTi1−xO3 ceramics: effect of polar nano-regions. Acta Mater. 61(12), 4481–4489 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Bootchanont, N. Triamnak, S. Rujirawat et al., Local structure and evolution of relaxor behavior in BaTiO3-Bi(Zn0.5Ti0.5)O3 ceramics. Ceram. Int. 40(9), 14555–14562 (2014)CrossRefGoogle Scholar
  13. 13.
    S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, A.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, S.A. Gudkova, C. Singh, Preparation and investigation of structure, magnetic and dielectric properties of (BaFe119Al01O19)1−x − (BaTiO3)x bicomponent ceramics. Ceram. Int. 44, 21295–21302 (2018)CrossRefGoogle Scholar
  14. 14.
    Z.F. Peng, Y. Chen, Preparation of BaTiO3 nanoparticles in aqueous solutions. Powder Technol. 1100(1–2), 2–14 (2000)Google Scholar
  15. 15.
    Y. Qu, Functional ceramic materials (Chemical Industry Press, Beijing, 2003), p. 95Google Scholar
  16. 16.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12−xAlxO19(x ≤ 1.2) at room temperature. JETP Lett. 103, 100–105 (2016)CrossRefGoogle Scholar
  17. 17.
    M.A. Almessiere, Y. Slimani, H. Güngüne, A. Bayka, S.V. Trukhanov, A.V. Trukhanov, Manganese/yttrium codoped strontium nanohexaferrites: evaluation of magnetic susceptibility and Mössbauer spectra. Nanomaterials 9, 24–88 (2019)CrossRefGoogle Scholar
  18. 18.
    P. He, Study on doping and liquid phase encapsulation modification of BZT-based capacitor dielectric materials. Master’s thesis of North China University of Technology, Hebei, 2016, p. 34Google Scholar
  19. 19.
    K. Watanable, H. Ohsato, H. Kishl et al., Solubility of La-Mg and La-Al in BaTiO3. Solid State Ionics 108(1/2/3/4), 129–135 (1998)CrossRefGoogle Scholar
  20. 20.
    A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, S.V. Trukhanov, Features of crystal and magnetic structure of the BaFe12-xGaxO19 (x ≤ 2) in the wide temperature range. J. Alloys Compd. 791, 522–529 (2019)CrossRefGoogle Scholar
  21. 21.
    W. Kang, Z. Zheng, Y. Li et al., Effect of doping Gd2O3 on dielectric and piezoelectric properties of BaZr0.1Ti0.9O3 ceramics by sol–gel method. J. Mater. Sci. 30(3), 2743–2749 (2019)Google Scholar
  22. 22.
    Z. Zhou, D. Li, W. Fu et al., Effect of La3+ doping on the structure and dielectric properties of barium titanate ceramics. Chinese Ceramics 50(7), 14–17 (2014)Google Scholar
  23. 23.
    S.V. Trukhanov, Investigation of stability of ordered manganites. JETP 101, 513–520 (2005)CrossRefGoogle Scholar
  24. 24.
    V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, Self-doped lanthanum manganites as a phase-separated system: transformation of magnetic, resonance, and transport properties with doping and hydrostatic compression. J. Appl. Phys. 104, 093909-9 (2008)CrossRefGoogle Scholar
  25. 25.
    E.T. Park, Grain growth of BaTiO3. J. Mater. Sci. Lett. 18(2), 163–165 (1999)CrossRefGoogle Scholar
  26. 26.
    P. Parjansri, U. Intatha, S. Eitssayeam, Dielectric, ferroelectric and piezoelectric properties of Nb5+ doped BCZT ceramics. Mater. Res. Bull. 65, 61–67 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, The basis of materialization of electronic ceramic materials (Publishing House of Electronics Industry, Beijing, 1996), pp. 230–231Google Scholar
  28. 28.
    X. Chen, W. Cai, C. Fu, Research progress in preparation and dielectric properties of zirconium titanate (BZT) ceramics. J. Ceram. 30(2), 257–263 (2009)Google Scholar
  29. 29.
    G. Peng, D. Zheng, S. Hu, Effect of Co2O3 doping on electrical properties and dielectric relaxation of Pb(Ni1/3Nb2/3)(Zr, Ti)O3 piezoelectric ceramics. J. Chin. Ceram. Soc. 44(3), 380–386 (2016)Google Scholar
  30. 30.
    Y. Li, W. Dun, S. Yan et al., Effect of samarium and lanthanum co-dopant on the microstructure and dielectric properties of BaZr02Ti08O3 ceramics. J. Mater. Sci. Mater. Electron. 28(16), 11636–11643 (2017)CrossRefGoogle Scholar
  31. 31.
    G.F. Yao, X.H. Wang, T.Y. Sun et al., Effects of CaZrO3 on X8R nonreducible BaTiO3-based dielectric ceramics. J. Am. Ceram. Soc. 94(11), 3856–3862 (2011)CrossRefGoogle Scholar
  32. 32.
    A.S. Kandari, A. Bhandari, A.A. Bourai et al., Electrical properties of Na1−xKxNbO3 (0.28 ≤ x≤0.40). Ferroelectrics 386(1), 139–151 (2009)CrossRefGoogle Scholar
  33. 33.
    W. Cai, J.C. Gao, C.L. Fu et al., Dielectric properties, microstructure and diffuse transition of Ni-doped Ba(Zr0.2Ti0.8)O3 ceramics. J. Alloy. Compd. 487(1–2), 668–674 (2009)CrossRefGoogle Scholar
  34. 34.
    M.P. Zhang, Y.D. Hou, F.Y. Xie et al., Effect of valence state and incorporation site of cobalt dopants on the microstructure and electrical properties of 0.2PZN-0.8PZT ceramics. Acta Mater. 61(5), 1489–1498 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Environment Functional Materials of Tangshan City, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and TechnologyTangshanChina

Personalised recommendations