Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21305–21315 | Cite as

Mediating dielectric/breakdown conflict in polydopamine@HfB2 nanorod-filled polymer composites from rational meaty-sandwich structure

  • Qihuang DengEmail author
  • Fupeng Wang
  • Yefeng FengEmail author
  • Zhichao Xu
  • Cheng PengEmail author
  • Xiaoqing Xu
  • Wei Li
  • Guoxun Wu


The contradiction between high permittivity and breakdown strength in dielectrics is acknowledged. Although a sandwich structure endows the nanocomposites with ultrahigh breakdown strengths, the permittivity is limited ascribed to series connection of layers. In this work, a novel strategy from “meaty-sandwich” food was utilized to prepare the multi-layer polymer nanocomposites with finely balanced high permittivity and breakdown strength. HfB2 nanorods, BaTiO3 nanoparticles, and BN nanosheets were used as fillers. HfB2 were surface-coated by polydopamine to gain the core–shell nanorods. High-content middle-layer composite results in a large dielectric response, while low-content bilateral-layer composite leads to high breakdown strength. Tri-layer composites with core–shell filler show high breakdown strengths. Five-layer composite with four high-insulation thin layers exhibits an ultrahigh breakdown strength and favorable permittivity. Breakdown mechanisms of composites were proposed. The best tri-layer composite shows a high permittivity of ~ 136@100 Hz and breakdown strength of ~ 263 MV m−1. This work might pave a road for fabrication of promising dielectrics.



This work was supported by National Natural Science Foundation of China [Grant No. 51502309], Talent Introduction Scientific Research Initiation Projects of Yangtze Normal University [Grant No. 2017KYQD33], Support Programme for Growth of Young Scientific Research Talents of Yangtze Normal University [Grant No. 0107/010721064], and Chongqing Basic Research and Frontier Exploration Project [Grant No. cstc2019jcyj-msxmX0518].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2019_2507_MOESM1_ESM.tif (862 kb)
Supplementary material 1 (TIFF 862 kb)
10854_2019_2507_MOESM2_ESM.tif (5.2 mb)
Supplementary material 2 (TIFF 5288 kb)
10854_2019_2507_MOESM3_ESM.tif (7.2 mb)
Supplementary material 3 (TIFF 7390 kb)
10854_2019_2507_MOESM4_ESM.tif (1 mb)
Supplementary material 4 (TIFF 1073 kb)
10854_2019_2507_MOESM5_ESM.tif (5.9 mb)
Supplementary material 5 (TIFF 6014 kb)
10854_2019_2507_MOESM6_ESM.tif (1.4 mb)
Supplementary material 6 (TIFF 1432 kb)


  1. 1.
    J.A. Turner, Science 285, 687 (1999)Google Scholar
  2. 2.
    B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334 (2006)Google Scholar
  3. 3.
    H. Pan, J. Ma, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y.-J. Zhang, L. Li, Y. Shen, Y.-H. Lin, C.-W. Nan, Nat. Commun. 9, 1813 (2018)Google Scholar
  4. 4.
    Z. Liu, Z. Yin, S.-C. Chen, S. Dai, J. Huang, Q. Zheng, Org. Electron. 53, 205–212 (2018)Google Scholar
  5. 5.
    Z. Pan, L. Yao, G. Ge, B. Shen, J. Zhai, J. Mater. Chem. A 6, 14614–14622 (2018)Google Scholar
  6. 6.
    S. Song, Y. Zhai, Y. Zhang, ACS Appl. Mater. Interfaces 8, 31264–31272 (2016)Google Scholar
  7. 7.
    S. Tu, Q. Jiang, X. Zhang, H.N. Alshareef, ACS Nano 12, 3369–3377 (2018)Google Scholar
  8. 8.
    Y. Feng, W.L. Li, Y.F. Hou, Y. Yu, W.P. Cao, T.D. Zhang, W.D. Fei, J. Mater. Chem. C 3, 1250–1260 (2015)Google Scholar
  9. 9.
    P. Hu, Y. Shen, Y. Guan, X. Zhang, Y. Lin, Q. Zhang, C.-W. Nan, Adv. Funct. Mater. 24, 3172–3178 (2014)Google Scholar
  10. 10.
    F. Liu, Q. Li, J. Cui, Z. Li, G. Yang, Y. Liu, L. Dong, C. Xiong, H. Wang, Q. Wang, Adv. Funct. Mater. 27, 1606292 (2017)Google Scholar
  11. 11.
    Y. Wang, L. Wang, Q. Yuan, Y. Niu, J. Chen, Q. Wang, H. Wang, J. Mater. Chem. A 5, 10849–10855 (2017)Google Scholar
  12. 12.
    B. Bêche, E. Gaviot, J. Phys. A 38, 10057–10067 (2005)Google Scholar
  13. 13.
    Y. Wang, J. Cui, Q. Yuan, Y. Niu, Y. Bai, H. Wang, Adv. Mater. 27, 6658–6663 (2015)Google Scholar
  14. 14.
    Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li, C.-W. Nan, J. Mater. Chem. 22, 16491–16498 (2012)Google Scholar
  15. 15.
    M.H. Lean, W.-P.L. Chu, J. Energy Storage 4, 36–50 (2015)Google Scholar
  16. 16.
    Y. Feng, Q. Deng, C. Peng, Q. Wu, Ceram. Int. 45, 7923–7930 (2019)Google Scholar
  17. 17.
    Y. Feng, Q. Wu, Q. Deng, C. Peng, J. Hu, Z. Xu, J. Mater. Chem. C 7, 6744–6751 (2019)Google Scholar
  18. 18.
    F.-F. Ma, N. Zhang, X. Wei, J.-H. Yang, Y. Wang, Z.-W. Zhou, J. Mater. Chem. A 5, 14430–14443 (2017)Google Scholar
  19. 19.
    Y. Shen, Y. Hu, W. Chen, J. Wang, Y. Guan, J. Du, X. Zhang, J. Ma, M. Li, Y. Lin, L.-Q. Chen, C.-W. Nan, Nano Energy 18, 176–186 (2015)Google Scholar
  20. 20.
    A. Gouissem, W. Fan, A.C.T. van Duin, P. Sharma, Comp. Mater. Sci. 70, 171–177 (2013)Google Scholar
  21. 21.
    L. Chen, Y. Gu, L. Shi, Z. Yang, J. Ma, Y. Qian, J. Alloys Compd. 368, 353–356 (2004)Google Scholar
  22. 22.
    C.L. Perkins, R. Singh, T. Tanaka, M. Trenary, Surf. Sci. Spectra 7, 316–321 (2000)Google Scholar
  23. 23.
    T.V. Khai, H.G. Na, D.S. Kwak, Y.J. Kwon, H. Ham, K.B. Shim, H.W. Kim, Chem. Eng. J. 211–212, 369–377 (2012)Google Scholar
  24. 24.
    H. Yang, Y. Lan, W. Zhu, W. Li, D. Xu, J. Cui, D. Shen, G. Li, J. Mater. Chem. 22, 16994–17001 (2012)Google Scholar
  25. 25.
    C. Schmidt, T. Breuer, S. Wippermann, W.G. Schmidt, G. Witte, J. Mater. Chem. C 116, 24098–24106 (2012)Google Scholar
  26. 26.
    J. Luo, S. Jiang, X. Liu, J. Mater. Chem. C 117, 18448–18456 (2013)Google Scholar
  27. 27.
    Y.-C. Chen, K.-W. Weng, C.-H. Chao, S.-Y. Lien, S. Han, T.-L. Chen, Y.-C. Lee, H.-C. Shih, D.-Y. Wang, Appl. Surf. Sci. 255, 7216–7220 (2009)Google Scholar
  28. 28.
    C. Zhang, L. Gong, L. Xiang, Y. Du, W. Hu, H. Zeng, Z.-K. Xu, ACS Appl. Mater. Interfaces 9, 30943–30950 (2017)Google Scholar
  29. 29.
    G.-J. Zhang, W.-M. Guo, D.-W. Ni, Y.-M. Kan, J. Phys: Conf. Ser. 176, 012041 (2009)Google Scholar
  30. 30.
    J.W. Lawson, C.W. Bauschlicher Jr., M.S. Daw, J. Am. Ceram. Soc. 94, 3494–3499 (2011)Google Scholar
  31. 31.
    S. Saidin, H. Hermawan, P. Chevallier, D. Mantovani, Adv. Mater. Res. 1125, 395–400 (2015)Google Scholar
  32. 32.
    Q. Li, W. Ke, T. Chang, Z. Hu, J. Mater. Chem. C 7, 1532–1543 (2019)Google Scholar
  33. 33.
    S.M. Sichkar, J. Supercond. Novel Magn. 28, 719–724 (2015)Google Scholar
  34. 34.
    Y. Wu, X. Zhao, F. Li, Z. Fan, J. Electroceram. 11, 227–239 (2003)Google Scholar
  35. 35.
    D.-H. Yoon, J. Zhang, B.I. Lee, Mater. Res. Bull. 38, 765–772 (2003)Google Scholar
  36. 36.
    X. Zhang, Y. Shen, Z. Shen, J. Jiang, L. Chen, C.-W. Nan, ACS Appl. Mater. Interfaces 8, 27236–27242 (2016)Google Scholar
  37. 37.
    F. Wen, Z. Xu, S. Tan, W. Xia, X. Wei, Z. Zhang, ACS Appl. Mater. Interfaces 5, 9411–9420 (2013)Google Scholar
  38. 38.
    Y. Xie, Y. Yu, Y. Feng, W. Jiang, Z. Zhang, ACS Appl. Mater. Interfaces 9, 2995–3005 (2017)Google Scholar
  39. 39.
    C. Ang, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 93, 3475–3480 (2003)Google Scholar
  40. 40.
    Y. Wang, Y. Hou, Y. Deng, Compos. Sci. Technol. 145, 71–77 (2017)Google Scholar
  41. 41.
    F. Liu, Q. Li, Z. Li, Y. Liu, L. Dong, C. Xiong, Q. Wang, Compos. Sci. Technol. 142, 139–144 (2017)Google Scholar
  42. 42.
    Y. Wang, L. Wang, Q. Yuan, J. Chen, Y. Niu, X. Xu, Y. Cheng, B. Yao, Q. Wang, H. Wang, Nano Energy 44, 364–370 (2018)Google Scholar
  43. 43.
    Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H.U. Li, E. Iagodkine, A. Haque, L.-Q. Chen, T.N. Jackson, Q. Wang, Nature 523, 576 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing, School of Materials Science and EngineeringYangtze Normal UniversityChongqingPeople’s Republic of China
  2. 2.Department of Fashion Communication and MediaJiangxi Institute of Fashion TechnologyNanchangPeople’s Republic of China
  3. 3.Ministry of Education’s Key Laboratory of Poyang Lake Wetland and Watershed ResearchJiangxi Normal UniversityNanchangPeople’s Republic of China
  4. 4.Institute of Landscape Architecture and Plant Resources, Art CollegeJiangxi University of Finance & EconomicsNanchangPeople’s Republic of China

Personalised recommendations