Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 20899–20913 | Cite as

Small-molecule additives for organic thin film transistors

  • Zhengran HeEmail author
  • Ziyang Zhang
  • Sheng Bi


Although much research progress has recently been achieved in solution-soluble, small-molecule, organic semiconductors, their randomly oriented crystals still remain as an issue that leads to nonuniform charge transport and severely degrades performance consistency of organic thin film transistors (OTFTs). In the paper, we reviewed the various small-molecule additives that have been reported to blend with these semiconductors in order to reduce their crystal misorientation and mobility variations of OTFTs. By mainly studying the examples of a representative small-molecule organic semiconductor 6,13-bis(triisopropylsilylethynyl) pentacene, we intend to disclose the important effects of the various additives on controlling the semiconductor crystallization, film morphology, and charge transport. This work can be facilely employed to align the crystal orientation and tweak the electrical performance of newly discovered small-molecule organic semiconductors, and will provide an in-depth understanding of the important application in high-performance, solution-based, large-area organic electronics devices.



  1. 1.
    F.A. Larik, M. Faisal, A. Saeed, Q. Abbas, M.A. Kazi, N. Abbas, A.A. Thebo, D.M. Khan, P.A. Channar, J. Mater. Sci.: Mater. Electron. 29, 17975 (2018)Google Scholar
  2. 2.
    M. Chu, J.X. Fan, S.J. Yang, D. Liu, C.F. Ng, H.L. Dong, A.M. Ren, Q. Miao, Adv. Mater. 30, 1803467 (2018)Google Scholar
  3. 3.
    K. Haase, C.T. da Rocha, C. Hauenstein, Y.C. Zheng, M. Hambsch, S.C.B. Mannsfeld, Adv. Electron. Mater. 4, 1800076 (2018)Google Scholar
  4. 4.
    Z.R. He, S. Shaik, S. Bi, J.H. Chen, D.W. Li, Appl. Phys. Lett. 106, 183301 (2015)Google Scholar
  5. 5.
    Y.Q. Shi, H. Guo, M.C. Qin, J.Y. Zhao, Y.X. Wang, H. Wang, Y.L. Wang, A. Facchetti, X.H. Lu, X.G. Guo, Adv. Mater. 30, 1705745 (2018)Google Scholar
  6. 6.
    D.W. Sun, C.H. Chen, J. Zhang, X.M. Wu, H.P. Chen, T.L. Guo, Appl. Phys. Lett. 112, 012102 (2018)Google Scholar
  7. 7.
    R.M. Lu, Y. Han, W.M. Zhang, X.X. Zhu, Z.P. Fei, T. Hodsden, T.D. Anthopoulos, M. Heeney, J. Mater. Chem. C 6, 2004 (2018)Google Scholar
  8. 8.
    S. Bi, Q. Li, Z. He, Q. Guo, K. Asare-Yeboah, Y. Liu, C. Jiang, Nano Energy 66, 104101 (2019)Google Scholar
  9. 9.
    D.Y. Zhang, Z.M. Li, J. Mater. Sci.: Mater. Electron. 29, 10663 (2018)Google Scholar
  10. 10.
    D. Kwak, J.A. Lim, B. Kang, W.H. Lee, K. Cho, Adv. Funct. Mater. 23, 5224 (2013)Google Scholar
  11. 11.
    X.G. Yu, N.J. Zhou, S.J. Han, H. Lin, D.B. Buchholz, J.S. Yu, R.P.H. Chang, T.J. Marks, A. Facchetti, J. Mater. Chem. C 1, 6532 (2013)Google Scholar
  12. 12.
    S. Bi, Q. Li, Y. Yan, K. Asare-Yeboah, T. Ma, C. Tang, Z. Ouyang, Z. He, Y. Liu, C. Jiang, Phys. Chem. Chem. Phys. 21, 2540 (2019)Google Scholar
  13. 13.
    Y. Wang, J.B. Su, S.Q. Dai, R. Li, Y.B. Ma, Q. Wang, L.J. Tian, K.Q. Ning, X.Q. Zhang, J. Mater. Sci.: Mater. Electron. 30, 1496 (2019)Google Scholar
  14. 14.
    P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Nat. Commun. 4, 2761 (2013)Google Scholar
  15. 15.
    F. Najafi-Ashtiani, J. Mater. Sci.: Mater. Electron. 30, 7087 (2019)Google Scholar
  16. 16.
    J.H. Chen, C.K. Tee, M. Shtein, D.C. Martin, J. Anthony, Org. Electron. 10, 696 (2009)Google Scholar
  17. 17.
    Z.R. He, K. Xiao, W. Durant, D.K. Hensley, J.E. Anthony, K.L. Hong, S.M. Kilbey, J.H. Chen, D.W. Li, Adv. Funct. Mater. 21, 3617 (2011)Google Scholar
  18. 18.
    J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, K. Cho, Adv. Funct. Mater. 18, 229 (2008)Google Scholar
  19. 19.
    S. Basu, F. Adriyanto, Y.H. Wang, Nanotechnology 25, 085201 (2014)Google Scholar
  20. 20.
    J.H. Chen, M. Shao, K. Xiao, Z.R. He, D.W. Li, B.S. Lokitz, D.K. Hensley, S.M. Kilbey, J.E. Anthony, J.K. Keum, A.J. Rondinone, W.Y. Lee, S.Y. Hong, Z.A. Bao, Chem. Mater. 25, 4378 (2013)Google Scholar
  21. 21.
    Z.R. He, D.W. Li, D.K. Hensley, A.J. Rondinone, J.H. Chen, Appl. Phys. Lett. 103, 113301 (2013)Google Scholar
  22. 22.
    J.H. Chen, C.K. Tee, J.Y. Yang, C. Shaw, M. Shtein, J. Anthony, D.C. Martin, J. Polym. Sci. B-Polym. Phys. 44, 3631 (2006)Google Scholar
  23. 23.
    J.H. Bae, H. Kim, G. Horowitz, S.D. Lee, Solid-State Electron. 63, 163 (2011)Google Scholar
  24. 24.
    J.H. Bae, J. Park, C.M. Keum, W.H. Kim, M.H. Kim, S.O. Kim, S.K. Kwon, S.D. Lee, Org. Electron. 11, 784 (2010)Google Scholar
  25. 25.
    C. Yu, T.K. Kim, H. Kim, J. Lee, S.J. Cho, H. Sohn, S. Kim, J. Nanosci. Nanotechnol. 10, 3489 (2010)Google Scholar
  26. 26.
    K. Asare-Yeboah, S. Bi, Z.R. He, D.W. Li, Org. Electron. 32, 195 (2016)Google Scholar
  27. 27.
    K. Asare-Yeboah, R.M. Frazier, G. Szulczewski, D. Li, J. Vac. Sci. Technol. B 32, 052401 (2014)Google Scholar
  28. 28.
    J.H. Chen, C.K. Tee, M. Shtein, J. Anthony, D.C. Martin, J. Appl. Phys. 103, 114513 (2008)Google Scholar
  29. 29.
    X. Meng, Z. Liu, B. Cui, D. Qin, H. Geng, W. Cai, L. Fu, J. He, Z. Ren, J. Sui, Adv. Energy Mater. 7, 1602582 (2017)Google Scholar
  30. 30.
    A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y.M. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, J.C. Hone, Nat. Mater. 12, 554 (2013)Google Scholar
  31. 31.
    J.B. Kim, C. Fuentes-Hernandez, D.K. Hwang, S.P. Tiwari, W.J. Potscavage, B. Kippelen, Org. Electron. 12, 1132 (2011)Google Scholar
  32. 32.
    J.H. Park, H. Lim, H. Cheong, K.M. Lee, H.C. Sohn, G. Lee, S. Im, Org. Electron. 13, 1250 (2012)Google Scholar
  33. 33.
    R.L. Headrick, S. Wo, F. Sansoz, J.E. Anthony, Appl. Phys. Lett. 92, 3 (2008)Google Scholar
  34. 34.
    T. Manaka, K. Matsubara, K. Abe, M. Iwamoto, Appl. Phys. Express 6, 101601 (2013)Google Scholar
  35. 35.
    K. Sakamoto, J. Ueno, K. Bulgarevich, K. Miki, Appl. Phys. Lett. 100, 123301 (2012)Google Scholar
  36. 36.
    Z. He, Z. Zhang, K. Asare-Yeboah, S. Bi, J. Mater. Sci.: Mater. Electron. (2019). CrossRefGoogle Scholar
  37. 37.
    S. Bi, Y. Li, Z.R. He, Z.L. Ouyang, Q.L. Guo, C.M. Jiang, Org. Electron. 65, 96 (2019)Google Scholar
  38. 38.
    I. Abdullah, H. Lan, J. Morrison, A. Alharbi, J.E. Macdonald, S.G. Yeates, J. Mater. Sci.: Mater. Electron. 29, 9804 (2018)Google Scholar
  39. 39.
    C.T. da Rocha, K. Haase, Y.C. Zheng, M. Loffler, M. Hambsch, S.C.B. Mannsfeld, Adv. Electron. Mater 4, 1800141 (2018)Google Scholar
  40. 40.
    Y. Diao, B.C.K. Tee, G. Giri, J. Xu, D.H. Kim, H.A. Becerril, R.M. Stoltenberg, T.H. Lee, G. Xue, S.C.B. Mannsfeld, Z.N. Bao, Nat. Mater. 12, 665 (2013)Google Scholar
  41. 41.
    B.Y. Peng, S.Y. Huang, Z.W. Zhou, P.K.L. Chan, Adv. Funct. Mater. 27, 1700999 (2017)Google Scholar
  42. 42.
    Y.Y. Zhao, X.Y. Fan, J.G. Feng, X.D. Wang, Y.C. Wu, B. Su, L. Jiang, Adv. Funct. Mater. 28, 1800470 (2018)Google Scholar
  43. 43.
    Z. He, Z. Zhang, S. Bi, Appl. Nanosci. (2019). CrossRefGoogle Scholar
  44. 44.
    D. Gupta, N. Jeon, S. Yoo, Org. Electron. 9, 1026 (2008)Google Scholar
  45. 45.
    J.P. Hong, A.Y. Park, S. Lee, J. Kang, N. Shin, D.Y. Yoon, Appl. Phys. Lett. 92, 143311 (2008)Google Scholar
  46. 46.
    T. Sakanoue, H. Sirringhaus, Nat. Mater. 9, 736 (2010)Google Scholar
  47. 47.
    J.H. Chen, D.C. Martin, J.E. Anthony, J. Mater. Res. 22, 1701 (2007)Google Scholar
  48. 48.
    J.H. Kwon, J.H. Seo, S.I. Shin, K.H. Kim, D.H. Choi, I.B. Kang, H. Kang, B.K. Ju, I.E.E.E. Trans, Electron. Devices 55, 500 (2008)Google Scholar
  49. 49.
    M.B. Madec, P.J. Smith, A. Malandraki, N. Wang, J.G. Korvink, S.G. Yeates, J. Mater. Chem. 20, 9155 (2010)Google Scholar
  50. 50.
    M.W. Lee, G.S. Ryu, Y.U. Lee, C. Pearson, M.C. Petty, C.K. Song, Microelectron. Eng. 95, 1 (2012)Google Scholar
  51. 51.
    C.S. Kim, S. Lee, E.D. Gomez, J.E. Anthony, Y.L. Loo, Appl. Phys. Lett. 93, 103302 (2008)Google Scholar
  52. 52.
    S.H. Lee, M.H. Choi, S.H. Han, D.J. Choo, J. Jang, S.K. Kwon, Org. Electron. 9, 721 (2008)Google Scholar
  53. 53.
    S.K. Park, D.A. Mourey, J.I. Han, J.E. Anthony, T.N. Jackson, Org. Electron. 10, 486 (2009)Google Scholar
  54. 54.
    K.N. Choi, K.S. Kim, K.S. Chung, H. Lee, I.E.E.E. Trans, Device Mater. Reliab. 9, 489 (2009)Google Scholar
  55. 55.
    K. Amer, A.M. Elshaer, M. Anas, S. Ebrahim, J. Mater. Sci.: Mater. Electron. 30, 391 (2019)Google Scholar
  56. 56.
    A. Demir, S. Alli, A. Alli, A. Kosemen, J. Mater. Sci.: Mater. Electron. 30, 11034 (2019)Google Scholar
  57. 57.
    H.B. Akkerman, H.Y. Li, Z.N. Bao, Org. Electron. 13, 2056 (2012)Google Scholar
  58. 58.
    Z. He, Z. Zhang, S. Bi, J. Polym. Res. (2019). CrossRefGoogle Scholar
  59. 59.
    Z. He, J. Chen, D. Li, Soft Matter 15, 5790 (2019)Google Scholar
  60. 60.
    Z. He, J. Chen, D. Li, J. Vac. Sci. Technol. A 37, 040801 (2019)Google Scholar
  61. 61.
    S. Bi, Z.R. He, J.H. Chen, D.W. Li, AIP Adv. 5, 077170 (2015)Google Scholar
  62. 62.
    Q.M. Chen, Z. Jia, H.C. Yuan, W. Zhu, Y. Ni, X.F. Zhu, X.M. Dou, J. Mater. Sci.: Mater. Electron. 30, 4519 (2019)Google Scholar
  63. 63.
    J. Sultana, S. Paul, A. Karmakar, G.K. Dalapati, S. Chattopadhyay, J. Mater. Sci.: Mater. Electron. 29, 12878 (2018)Google Scholar
  64. 64.
    H. Kwak, J. Yang, J.G. Kang, T.Y. Eom, H. Kim, H.J. Lee, C. Kang, J. Mater. Sci.: Mater. Electron. 29, 8660 (2018)Google Scholar
  65. 65.
    J. Xie, Q. Xie, R. Ma, J. Huang, C. Zhang, D. Liu, J. Mater. Sci.: Mater. Electron. 29, 1369 (2018)Google Scholar
  66. 66.
    R.N. Aljawfi, K. Kumari, A. Vij, M. Hashim, K.H. Chae, P.A. Alvi, S. Kumar, J. Mater. Sci.: Mater. Electron. 29, 5982 (2018)Google Scholar
  67. 67.
    H.B. Akkerman, A.C. Chang, E. Verploegen, C.J. Bettinger, M.F. Toney, Z.N. Bao, Org. Electron. 13, 235 (2012)Google Scholar
  68. 68.
    Z.R. He, N. Lopez, X.L. Chi, D.W. Li, Org. Electron. 22, 191 (2015)Google Scholar
  69. 69.
    J. Soeda, T. Uemura, Y. Mizuno, A. Nakao, Y. Nakazawa, A. Facchetti, J. Takeya, Adv. Mater. 23, 3681 (2011)Google Scholar
  70. 70.
    U. Jeong, G. Tarsoly, J. Lee, Y. Eun, J. Do, S. Pyo, Adv. Electron. Mater. 5, 1800652 (2019)Google Scholar
  71. 71.
    I. Bae, S.J. Kang, Y.J. Shin, Y.J. Park, R.H. Kim, F. Mathevet, C. Park, Adv. Mater. 23, 3398 (2011)Google Scholar
  72. 72.
    W. Deng, X. Zhang, H. Dong, J. Jie, X. Xu, J. Liu, L. He, L. Xu, W. Hu, X. Zhang, Mater. Today 24, 17 (2019). CrossRefGoogle Scholar
  73. 73.
    Z.R. He, J.H. Chen, Z.Z. Sun, G. Szulczewski, D.W. Li, Org. Electron. 13, 1819 (2012)Google Scholar
  74. 74.
    Y.Z. Li, D.Y. Ji, J. Liu, Y.F. Yao, X.L. Fu, W.G. Zhu, C.H. Xu, H.L. Dong, J.Z. Li, W.P. Hu, Sci. Rep. 5, 88059 (2015)Google Scholar
  75. 75.
    Y.J. Park, J.H. Seo, W. Elsawy, B. Walker, S. Cho, J.S. Lee, J. Mater. Chem. C 3, 5951 (2015)Google Scholar
  76. 76.
    G.J. Chae, S.H. Jeong, J.H. Baek, B. Walker, C.K. Song, J.H. Seo, J. Mater. Chem. C 1, 4216 (2013)Google Scholar
  77. 77.
    Z.R. He, J.H. Chen, J.K. Keum, G. Szulczewski, D.W. Li, Org. Electron. 15, 150 (2014)Google Scholar
  78. 78.
    L.G. Parratt, Phys. Rev. 95, 359 (1954)Google Scholar
  79. 79.
    O. R. L. Griffith, Ph. D. Thesis, The University of Arizona (2010)Google Scholar
  80. 80.
    Z. He, K. Asare-Yeboah, Z. Zhang, S. Bi, Jpn. J. Appl. Phys. (2019). CrossRefGoogle Scholar
  81. 81.
    N.D. Treat, J.A.N. Malik, O. Reid, L.Y. Yu, C.G. Shuttle, G. Rumbles, C.J. Hawker, M.L. Chabinyc, P. Smith, N. Stingelin, Nat. Mater. 12, 628 (2013)Google Scholar
  82. 82.
    D. Bharti, S.P. Tiwari, Synth. Met. 215, 1 (2016)Google Scholar
  83. 83.
    M. Nikolka, I. Nasrallah, B. Rose, M.K. Ravva, K. Broch, A. Sadhanala, D. Harkin, J. Charmet, M. Hurhangee, A. Brown, S. Illig, P. Too, J. Jongman, I. McCulloch, J.L. Bredas, H. Sirringhaus, Nat. Mater. 16, 356 (2017)Google Scholar
  84. 84.
    N. Onojima, H. Saito, T. Kato, Org. Electron. 14, 2406 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of AlabamaTuscaloosaUSA
  2. 2.Department of Electrical EngineeringColumbia UniversityNew York CityUSA
  3. 3.Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, and Institute of Photoelectric Nanoscience and NanotechnologyDalian University of TechnologyDalianChina

Personalised recommendations