Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21269–21277 | Cite as

Binary strontium–copper oxide nanostructures doped with potassium as electrode material for supercapacitor application

  • Hasi Rani Barai
  • Nasrin Siraj Lopa
  • Paritosh Barai
  • Md. Mahbubur RahmanEmail author
  • Ashis K. Sarker
  • Sang Woo JooEmail author


Recently, binary metal-oxide--based electrode materials with and without doping have attracted growing interest for application to supercapacitors (SCs). Herein, we demonstrate the synthesis of a K-doped (ca. 9%) binary Sr–Cu metal oxide (K-SrCu2O2; KSCO) by a simple solid-state reaction with good crystallinity. The KSCO-modified carbon-cloth (CC) electrode showed a wide electrochemical potential window (− 0.2 to 0.8 V) and delivered a specific capacitance (Cs) of 438 F g−1 at 1 A g−1, compared to the low value (14.5 F g−1 at 1 A g−1) for the undoped SrCu2O2 (SCO)-modified electrode. This substantially improved Cs for SCO upon K-doping can be attributed to the increased conductivity, which enhanced the rate of ion intercalation/deintercalation into the tunnels of KSCO. Furthermore, the KSCO-modified electrode exhibited high-electrochemical stability with a capacitance loss of only 10% after 5000 charge–discharge cycles.



This work was funded by Grant NRF-2018R1A2B3001246 of the National Research Foundation of Korea.

Supplementary material

10854_2019_2500_MOESM1_ESM.docx (573 kb)
Supplementary material 1 (DOCX 572 kb)


  1. 1.
    J. Zhang, F. Liu, J.P. Cheng, X.B. Zhang, Binary nickel-cobalt oxides electrode materials for high-performance supercapacitors: influence of its composition and porous nature. ACS Appl. Mater. Interfaces. 7, 17630–17640 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Yuvaraj, W. Oh, W.-S. Yoon, Recent progress on sodium vanadium fluorophosphates for high voltage sodium-ion battery application. J. Electrochem. Sci. Technol. 10, 1–13 (2019)Google Scholar
  3. 3.
    H.R. Barai, M.M. Rahman, S.W. Joo, Annealing-free synthesis of K-doped mixed-phase TiO2 nanofibers on Ti foil for electrochemical supercapacitor. Electrochim. Acta 253, 563–571 (2017)CrossRefGoogle Scholar
  4. 4.
    H.R. Barai, M.M. Rahman, S.W. Joo, Template-free synthesis of two-dimensional titania/titanate nanosheets as electrodes for high-performance supercapacitor applications. J. Power Sources 372, 227–234 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Hu, J.H. Park, K.S. Lee, J.M. Ko, Naphthalene derivative supported activated carbon composite electrode with enhanced capacitance and potential window. J. Electrochem. Sci. Technol. 10, 99–103 (2019)Google Scholar
  6. 6.
    A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review. J. Mater. Chem. A 5, 12653–12672 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Hou, C. Yuan, Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J. Mater. Chem. A 5, 9443–9464 (2017)CrossRefGoogle Scholar
  8. 8.
    G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang, Y.-W. Yang, Mesoporous Transition Metal Oxides for Supercapacitors. Nanomaterials 5, 1667–1689 (2015)CrossRefGoogle Scholar
  10. 10.
    H.R. Barai, A.N. Banarjee, N. Hamnabard, S.W. Joo, Synthesis of amorphous manganese oxide nanoparticles–to–crystalline nanorods through a simple wet-chemical technique using K+ ions as a ‘growth director’ and their morphology-controlled high performance supercapacitor applications. RSC. Adv. 6, 78887–78908 (2016)CrossRefGoogle Scholar
  11. 11.
    H.R. Barai, M.M. Rahman, A. Rahim, S.W. Joo, α-MnO2 nanorod/boron nitride nanoplatelet composites for high-performance nanoscale dielectric pseudocapacitor applications. J. Ind. Eng. Chem. (2013). CrossRefGoogle Scholar
  12. 12.
    V. Senthilkumar, Y.S. Kim, S. Chandrasekaran, B. Rajagopalan, E.J. Kim, J.S. Chung, Comparative supercapacitance performance of CuO nanostructures for energy storage device applications. RSC Adv. 5, 20545–20553 (2015)CrossRefGoogle Scholar
  13. 13.
    C.Z. Yuan, L. Yang, L.R. Hou, L.F. Shen, F. Zhang, D.K. Li, X.G. Zhang, Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. J. Mater. Chem. 21, 18183–18185 (2011)CrossRefGoogle Scholar
  14. 14.
    K.K. Lee, W.S. Chin, C.H. Sow, Cobalt-based compounds and composites as electrode materials for high-performance electrochemical capacitors. J. Mater. Chem. A 2, 17212–17248 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Li, G. Zan, Q. Wu, An ultra-high-performance anode material for supercapacitors: self-assembled long Co3O4 hollow tube network with multiple heteroatom (C-, N- and S-) doping. J. Mater. Chem. A 4, 9097–9105 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, L. Li, W. Hunag, X. Dong, Binary metal oxide: advanced energy storage materials in supercapacitors. J. Mater. Chem. A 3, 43–59 (2015)CrossRefGoogle Scholar
  17. 17.
    Z. Wang, J. Zhu, P. Sun, P. Zhang, Z. Zeng, S. Liang, X. Zhu, Nanostructured Mn–Cu binary oxides for supercapacitor. J. Alloys Compd. 598, 166–170 (2014)CrossRefGoogle Scholar
  18. 18.
    M.-T. Lee, J.-K. Chang, W.-T. Tsai, C.-K. Lin, In situ X-ray absorption spectroscopic studies of anodically deposited binary Mn–Fe mixed oxides with relevance to pseudocapacitance. J. Power Sources 178, 476–482 (2008)CrossRefGoogle Scholar
  19. 19.
    C. Yuan, L. Hou, D. Li, Y. Zhang, S. Ziong, X. Zhang, Unusual electrochemical behavior of Ru–Cr binary oxide-based aqueous symmetric supercapacitors in KOH solution. Electrochim. Acta 88, 654–658 (2013)CrossRefGoogle Scholar
  20. 20.
    H.R. Barai, M.M. Rahman, M. Roy, P. Barai, S.W. Joo, A calcium doped binary strontium-copper oxide electrode material for high-performance supercapacitors. Mater. Sci. Semiconduct. Processs. 90, 245–251 (2019)CrossRefGoogle Scholar
  21. 21.
    S. Giri, D. Ghosh, C.K. Das, One pot synthesis of ilmenite-type NiMnO3–“nitrogen-doped” graphene nanocomposite as next generation supercapacitors. Dalton Trans. 42, 14361–14364 (2013)CrossRefGoogle Scholar
  22. 22.
    N. Zhang, J. Sun, H. Gong, Transparent p-type semiconductors: copper-based oxides and oxychalcogenides. Coatings 9, 137 (2019)CrossRefGoogle Scholar
  23. 23.
    G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze, Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Zhao, W. Dong, X. Fang, Y. Zhou, G. Meng, R. Tao, Z. Deng, S. Zhou, S. Dai, P-type Ca doped SrCu2O2 thin film: synthesis, optical property and photovoltaic application. J. Alloys Compd. 513, 50–54 (2012)CrossRefGoogle Scholar
  25. 25.
    S. Sheng, G. Fang, C. Li, Z. Chen, S. Ma, L. Fang, X. Zhao, Oriented growth of p-type transparent conducting Ca-doped SrCu2O2 thin films by pulsed laser deposition. Semicond. Sci. Technol. 21, 586–590 (2006)CrossRefGoogle Scholar
  26. 26.
    O.T. Tambunan, I.-H. Kim, B.W. Lee, C. Liu, Effect of Ca doping on the thermoelectric properties of SrCu2O2. J. Ceram. Process. Res. 13, 258–261 (2012)Google Scholar
  27. 27.
    P. Lu, X. Hu, Y. Li, M. Zhang, X. Liu, Y. He, F. Dong, M. Fu, Z. Zhang, One-step preparation of a novel SrCO3/g-C3N4 nano-composite and its application in selective adsorption of crystal violet. RSC Adv. 8, 6315–6325 (2018)CrossRefGoogle Scholar
  28. 28.
    L. Feng, C. Zhang, G. Gao, D. Cui, Facile synthesis of hollow Cu2O octahedral and spherical nanocrystals and their morphology-dependent photocatalytic properties. Nanoscale Res. Lett. 7, 276 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Hayashi, M. Uchibayashi, T. Horikawa, K. Muroyama, V.G. Gomes, Synthesizing activated carbons from resins by chemical activation with K2CO3. Carbon 40, 2747–2752 (2002)CrossRefGoogle Scholar
  30. 30.
    A. Maheshwari, H.-D. Wiemhöfer, Optimized mixed ionic–electronic conductivity in two-phase ceria–zirconia composite with cobalt oxide and Na2CO3 as suitable additives. J. Mater. Chem. A 4, 4402–4412 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Dutta, P.K. Mukhopadhyay, T.P. Sinha, S. Shannigrahi, A.K. Himanshu, P. Sen, S.K. Bandyopadhyay, Sr2SmNbO6 perovskite: synthesis, characterization and density functional theory calculations. Mater. Chem. Phys. 179, 55–64 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Wang, M.M. Rahman, C. Ge, J.-J. Lee, Electrodeposition of Cu2S nanoparticles on fluorine-doped tin oxide for efficient counter electrode of quantum-dot-sensitized solar cells. J. Ind. Eng. Chem. 62, 185–191 (2018)CrossRefGoogle Scholar
  33. 33.
    Y. Lu, S. Song, Z. Song, F. Rao, L. Wu, M. Zhu, B. Liu, D. Yao, Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications. Appl. Phys. Lett. 100, 193114 (2012)CrossRefGoogle Scholar
  34. 34.
    F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, R. Turan, Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 147, 987–995 (2014)CrossRefGoogle Scholar
  35. 35.
    G.R. Xu, C. Ge, D. Liu, J. Lei, Y.C. Li, T.H. Zhang, M.M. Rahman, X.B. Li, W. Kim, In-situ electrochemical deposition of dendritic Cu-Cu2S nanocomposites onto glassy carbon electrode for sensitive and non-enzymatic detection of glucose. J. Electroanal. Chem. 847, 113117 (2019)Google Scholar
  36. 36.
    Z. Ahmad, M.A. Najeeb, R.A. Shakoor, A. Alashraf, S.A. Al-Muhtaseb, A. Soliman, M.K. Nazeeruddin, Instability in CH3NH3PbI3 perovskite solar cells due to elemental migration and chemical composition changes. Sci. Rep. 7, 15406 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Nili, A.E. Kandjani, J.D. Plessis, V. Bansal, K. Kalantar-zadeh, S. Sriram, M. Bhaskaran, Alkali ratio control for lead-free piezoelectric thin films utilizing elemental diffusivities in RF plasma. CrystEngComm 15, 7222–7229 (2013)CrossRefGoogle Scholar
  38. 38.
    L. Zheng, C. Wang, Y. Dong, H. Bian, T.F. Hung, J. Lu, Y.Y. Li, High-performance supercapacitors based on amorphous C-modified anodic TiO2 nanotubes. Appl. Surf. Sci. 362, 399–405 (2016)CrossRefGoogle Scholar
  39. 39.
    P. Yang, D. Chao, C. Zhu, X. Xia, Y. Zhang, X. Wang, P. Sun, B.K. Tay, Z.X. Shen, W. Mai, H.J. Fan, Ultrafast-charging supercapacitors based on corn-like titanium nitride nanostructures. Adv. Sci. 3, 1500299 (2016)CrossRefGoogle Scholar
  40. 40.
    M.J. Akhtar, H.A. Alhadlaq, A. Alshamsan, M.A.M. Khan, M. Ahamed, Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells. Sci. Rep. 5, 13876 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringYeungnam UniversityGyeongsanKorea
  2. 2.Department of Energy and MaterialsKonkuk UniversityChungjuKorea
  3. 3.Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
  4. 4.Department of ChemistryMawlana Bhashani Science and Technology UniversityTangailBangladesh

Personalised recommendations