Advertisement

Enhanced electrochemical performance of Li1.18Ni0.15Co0.15Mn0.52O2 cathode modified with aluminosilicate solid acid

  • Fang HuEmail author
  • Dongxu Zhang
  • Fuhan Cui
  • Di Xie
  • Guihong Song
Article

Abstract

Li-rich cathode material Li1.18Ni0.15Co0.15Mn0.52O2 is prepared by a sol–gel method and modified with aluminosilicate solid acid (Al2O3·SiO2) via an ultrasonic impregnation process. Compared with the pristine and Al2O3/SiO2-sole-modified counterparts, the Al2O3·SiO2 coating layer with high acid center strength on Li1.18Ni0.15Co0.15Mn0.52O2 material exhibits overall improved electrochemical performance. Galvanostatic charge–discharge tests at the current density of 200 mA g−1 displays the highest capacity retention of 72.5% and voltage retention of 95.1% after 200 cycles for Al2O3·SiO2-coated material. Meanwhile, a high rate capability of 99.2 mAh g−1 after 300 cycles is obtained with a good retention of 65.7% at the current density of 1 A g−1. The analysis of dQ/dV plots indicates the strong acid center strength of Al2O3·SiO2 coating layer on Li1.18Ni0.15Co0.15Mn0.52O2 cathode material can be favor of suppressing the voltage decay and reducing the side reactions between the electrode and the electrolyte.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51772193), Nature Science Fund of Liaoning Province (Grant No. 20180550200), and Project of Science and Technology Plan Shenyang (Grant No. 17-231-1-18).

References

  1. 1.
    B. Kang, G. Ceder, Nature 458, 190–193 (2009)CrossRefGoogle Scholar
  2. 2.
    D. Luo, S. Fang, L. Yang, S. Hirano, J. Mater. Chem. A 4, 5184–5190 (2016)CrossRefGoogle Scholar
  3. 3.
    M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Adv. Funct. Mater. 29(25), 1807398 (2019)CrossRefGoogle Scholar
  4. 4.
    W.Q. Cao, W.Z. Wang, H.L. Shi, J. Wang, M.S. Cao, L.J. Liang, M. Zhu, Nano Res. 11(3), 1437–1446 (2018)CrossRefGoogle Scholar
  5. 5.
    Y.L. Zhang, W.Q. Cao, Y.Z. Cai, J.C. Shu, M.S. Cao, Inorg. Chem. Front. 6(4), 961–968 (2019)CrossRefGoogle Scholar
  6. 6.
    Y.G. Lim, D. Kim, J.M. Lim, J.S. Lim, J.S. Yu, Y.J. Kim, D. Byun, M. Cho, K. Cho, M.S. Park, J. Mater. Chem. A 3, 12377–12385 (2015)CrossRefGoogle Scholar
  7. 7.
    T. Li, X.H. Li, Z.X. Wang, H.J. Guo, J. Power Sources 342, 495–503 (2017)CrossRefGoogle Scholar
  8. 8.
    L.C. Wang, L. Li, X.X. Zhang, F. Wu, R.J. Chen, ACS Appl. Mater. Interfaces 10, 32120–32127 (2018)CrossRefGoogle Scholar
  9. 9.
    T. Chen, X. Li, H. Wang, X.X. Yan, L. Wang, B.W. Deng, W.J. Ge, M.Z. Qu, J. Power Sources 374, 1–11 (2018)CrossRefGoogle Scholar
  10. 10.
    F. Hu, W. Jiang, Y.D. Dong, X.Y. Lai, L. Xiao, X. Wu, RSC Adv. 7, 29481–29488 (2017)CrossRefGoogle Scholar
  11. 11.
    Y.F. Deng, C.X. Yang, K.X. Zou, X.S. Qin, Z.X. Zhao, G.H. Chen, Adv. Energy Mater. 7, 1601958 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin, M.T. Sougrati, M.L. Doublet, D. Foix, D. Gonbeau, W. Walker, A.S. Prakash, M. Ben Hassine, L. Dupont, J.M. Tarascon, Nat. Mater. 12, 827–835 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Koga, L. Croguennec, M. Ménétrier, K. Douhil, S. Belin, L. Bourgeois, E. Suard, F. Weill, C. Delmas, J. Electrochem. Soc. 160, A786–A792 (2013)CrossRefGoogle Scholar
  14. 14.
    P. Rozier, J.M. Tarascon, J. Electrochem. Soc. 162, A2490–A2499 (2015)CrossRefGoogle Scholar
  15. 15.
    K. Luo, M.R. Roberts, R. Hao, N. Guerrini, D.M. Pickup, Y.S. Liu, K. Edström, J.H. Guo, A.V. Chadwick, L.C. Duda, P.G. Bruce, Nat. Chem. 8, 684–691 (2016)CrossRefGoogle Scholar
  16. 16.
    D.H. Seo, J. Lee, A. Urban, R. Malik, S.Y. Kang, G. Ceder, Nat. Chem. 8, 692–697 (2016)CrossRefGoogle Scholar
  17. 17.
    F. Wu, N. Li, Y.F. Su, H.F. Shou, L.Y. Bao, W. Yang, L.J. Zhang, R. An, S. Chen, Adv. Mater. 25, 3722–3726 (2013)CrossRefGoogle Scholar
  18. 18.
    D. Wang, I. Belharouak, G. Zhou, K. Amine, Adv. Funct. Mater. 23, 1070–1075 (2013)CrossRefGoogle Scholar
  19. 19.
    Q.Q. Qiao, L. Qin, G.R. Li, Y.L. Wang, X.P. Gao, J. Mater. Chem. A 3, 17627–17634 (2015)CrossRefGoogle Scholar
  20. 20.
    H.Z. Zhang, Q.Q. Qiao, G.R. Li, X.P. Gao, J. Mater. Chem. A 2, 7454–7460 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Chen, Q.Y. Hu, Z.M. Huang, Z.J. He, Z.X. Wang, H.J. Guo, X.H. Li, Ceram. Int. 42, 263–269 (2016)CrossRefGoogle Scholar
  22. 22.
    L.J. Zhou, Z.L. Yin, H. Tian, Z.Y. Ding, X.H. Li, Z.X. Wang, H.J. Guo, Appl. Surf. Sci. 456, 763–770 (2018)CrossRefGoogle Scholar
  23. 23.
    X.F. Bian, Q. Fu, H.L. Qiu, F. Du, Y. Gao, L.J. Zhang, B. Zou, G. Chen, Y.J. Wei, Chem. Mater. 27, 5745–5754 (2015)CrossRefGoogle Scholar
  24. 24.
    D.K. Lee, S.H. Park, K. Amine, H.J. Bang, J. Parakash, Y.K. Sun, J. Power Sources 162, 1346–1350 (2006)CrossRefGoogle Scholar
  25. 25.
    G.S. Zou, X.K. Yang, X.Y. Wang, L. Ge, H.B. Shu, Y.S. Bai, C. Wu, H.P. Guo, L. Hu, X. Yi, B.W. Ju, H. Hu, D. Wang, R.Z. Yu, J Solid State Electrochem. 18, 1789–1797 (2014)CrossRefGoogle Scholar
  26. 26.
    R.B. Yu, Y.B. Lin, Z.G. Huang, Electrochim. Acta 173, 515–522 (2015)CrossRefGoogle Scholar
  27. 27.
    Z.Y. Wang, E.Z. Liu, L.C. Guo, C.S. Shi, C.N. He, J.J. Li, N.Q. Zhao, Surf. Coat. Technol. 235, 570–576 (2013)CrossRefGoogle Scholar
  28. 28.
    F. Wu, Z. Wang, Y.F. Su, N. Yan, L.Y. Bao, S. Chen, J. Power Sources 247, 20–25 (2014)CrossRefGoogle Scholar
  29. 29.
    S.J. Shi, J.P. Tu, Y.Y. Tang, X.Y. Liu, Y.Q. Zhang, X.L. Wang, C.D. Gu, Electrochim. Acta 88, 671–679 (2013)CrossRefGoogle Scholar
  30. 30.
    G.R. Hu, X.Y. Qi, K.H. Hu, X.W. Lai, X. Zhang, K. Du, Z.D. Peng, Y.B. Cao, Electrochim. Acta 265, 391–399 (2016)CrossRefGoogle Scholar
  31. 31.
    I.T. Kim, J.C. Knight, H. Celio, A. Manthiram, J. Mater. Chem. A 2, 8696–8704 (2014)CrossRefGoogle Scholar
  32. 32.
    F. Wu, X.X. Zhang, T.L. Zhao, L. Li, M. Xie, R.J. Chen, J. Mater. Chem. A 3, 9528–9537 (2015)CrossRefGoogle Scholar
  33. 33.
    H. Liu, C. Chen, C.Y. Du, X.S. He, G.P. Yin, B. Song, P.J. Zuo, X.Q. Cheng, Y.L. Ma, Y.Z. Gao, J. Mater. Chem. A 3, 2634–2641 (2015)CrossRefGoogle Scholar
  34. 34.
    Q. Fu, F. Du, X.F. Bian, Y.H. Wang, X. Yan, Y.Q. Zhang, K. Zhu, G. Chen, C.Z. Wang, Y.J. Wei, J. Mater. Chem. A 2, 7555–7562 (2014)CrossRefGoogle Scholar
  35. 35.
    L. Dahéron, R. Dedryvère, H. Martinez, D. Flahaut, M. Ménétrier, C. Delmas, D. Gonbeau, Chem. Mater. 21, 5607–5616 (2009)CrossRefGoogle Scholar
  36. 36.
    N. Andreu, I. Baraille, H. Martinez, R. Dedryvère, M. Loudet, D. Gonbeau, J. Phys. Chem. C 116, 20332–20341 (2012)CrossRefGoogle Scholar
  37. 37.
    S.J. Shi, J.P. Tu, Y.Y. Tang, Y.X. Yu, Y.Q. Zhang, X.L. Wang, J. Power. Sources 211, 300–307 (2013)CrossRefGoogle Scholar
  38. 38.
    Y.S. Wu, J. Ma, F. Hu, M.C. Li, J. Mater. Sci. Technol. 28, 572–576 (2012)CrossRefGoogle Scholar
  39. 39.
    M.A. Karakassides, D. Petridis, D. Gournis, Clays Clay Miner. 45, 649–658 (1997)CrossRefGoogle Scholar
  40. 40.
    R.K. Vempati, A. Rao, T.R. Hess, D.L. Cocke, H.V. Lauer, Cem. Concr. Res. 24, 1153–1164 (1994)CrossRefGoogle Scholar
  41. 41.
    M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedeka, S.A. Hackney, J. Mater. Chem. 17, 3112–3125 (2007)CrossRefGoogle Scholar
  42. 42.
    G. Assat, J.M. Tarascon, Nat. Energy 3, 373–386 (2018)CrossRefGoogle Scholar
  43. 43.
    N. Tran, L. Croguennec, M. Me´ne´trier, F. Weill, Ph Biensan, C. Jordy, C. Delmas, Chem. Mater. 20, 4815–4825 (2008)CrossRefGoogle Scholar
  44. 44.
    M.D. Radin, J. Vinckeviciute, R. Seshadri, A. Van der Ven, Nature Energy 4, 639–646 (2019)CrossRefGoogle Scholar
  45. 45.
    J. Xu, M.L. Sun, R.M. Qiao, S.E. Renfrew, L. Ma, T.P. Wu, S. Hwang, D. Nordlund, D. Su, K. Amine, J. Lu, B.D. McCloskey, W.L. Yang, W. Tong, Nat. Commun. 9, 947 (2018)CrossRefGoogle Scholar
  46. 46.
    G. Assat, A. Iadecola, C. Delacourt, R. Dedryvere, J.M. Tarascon, Chem. Mater. 29, 9714–9724 (2017)CrossRefGoogle Scholar
  47. 47.
    G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvère, J.M. Tarascon, Nat. Commun. 8, 2219 (2017)CrossRefGoogle Scholar
  48. 48.
    X.D. Zhang, J.L. Shi, Y.J. Liang, Y.X. Yin, J.N. Zhang, X.Q. Yu, Y.G. Guo, Adv. Mater. 30, 1801751 (2018)CrossRefGoogle Scholar
  49. 49.
    J. Liu, A. Manthiram, J. Mater. Chem. 20, 3961–3967 (2010)CrossRefGoogle Scholar
  50. 50.
    D.H. Cho, H. Yashiro, Y.K. Sun, S.T. Myung, J. Electrochem. Soc. 161, A142–A148 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShenyang University of TechnologyShenyangChina

Personalised recommendations