Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21199–21209 | Cite as

Crystal growth, optical bandgap, thermal, mechanical, dielectric studies on NLO active semiorganic 4-dimethylaminopyridine sodium chloride crystal for frequency conversion

  • J. JohnsonEmail author
  • R. Srineevasan
  • D. Sivavishnu
Article
  • 33 Downloads

Abstract

4-Dimethylaminopyridine sodium chloride crystal (4-DMAPNC) was synthesized by slow evaporation solution growth technique. Grown as- 4-DMAPNC crystal was subjected to various studies in order to understand its physiochemical properties. The crystalline nature and orthorhombic crystal system and cell parameters values a = 6. 852, b = 7.290, c = 11.073 with volume V = 553 Å3 were identified from powder and single crystal XRD studies. FTIR spectroscopy study confirms the presence of various modes vibrations available in the 4-DMAPNC sample. Linear optical studies show the lower cutoff wavelength of 194 nm with optical bandgap value (Eg) of 6.22 eV. Extinction coefficients (K), reflectance (R) and refractive index (n0 = 1.44) are calculated in addition for better understanding the optical behavior of the 4-DMAPNC crystal. TGA and DTA curve shows that the material thermally stable up to 128 °C. The electrical behavior of the 4-DMAPNC crystal was studied using dielectric studies. The Vickers hardness study shows the reveres indentation size effect (RISH) and belongs to soft category one. EDAX analysis was carried out and confirms the presence of metal sodium in the title compound. The second nonlinear optical (NLO) behavior of 4-DMAPNC crystal was measured using Kurtz-Perry powder techniques and found to be 0.5 than that of reference KDP.

Notes

References

  1. 1.
    P. Karuppasamy, T. Kamalesh, K. Anitha, S. Abdul Kalam, M. Senthil Pandian, P. Ramasamy, S. Verma, S. Venugopal Rao, Synthesis, crystal growth, structure and characterization of a novel third order nonlinear optical organic single crystal: 2-amino 4,6-dimethyl pyrimidine 4-nitrophenol. Opt. Mater. 84, 475–489 (2018).  https://doi.org/10.1016/j.optmat.2018.07.039 CrossRefGoogle Scholar
  2. 2.
    V. Vasudevan, R. Ramesh Babu, K. Ramamurthi, Surface topography and optical studies on polystyrene (PS) coated l-lysine monohydrochloride dihydrate (LLMHCl) single crystals. Mater. Lett. 68, 277–279 (2012).  https://doi.org/10.1016/j.matlet.2018.09.148 CrossRefGoogle Scholar
  3. 3.
    M. Krishnakumar, S. Karthick, G. Vinitha, K. Thirupugalmani, B. Babu, S. Brahadeeswaran, Growth, structural, linear, nonlinear optical and laser induced damage threshold studies of an organic compound: 2-amino pyridinium-4-hydroxy benzoate. Mater. Lett. 235, 35–38 (2019).  https://doi.org/10.1016/j.matlet.2018.09.148 CrossRefGoogle Scholar
  4. 4.
    R. Aarthi, P. Umarani, C. Ramachandra Raja, Molecular structural confirmation and influence of hydrogen bond on third order nonlinear properties of bis(4-methylbenzylammonium) tetra chloride cadmate(II) single crystal. Optik 164, 449–454 (2018).  https://doi.org/10.1016/j.ijleo.2018.03.047 CrossRefGoogle Scholar
  5. 5.
    N. Ennaceur, B. Jalel, R. Henchiri, M. Cordier, I. Ledoux-Rak, Synthesis, structure and characterization of a hybrid centrosymmetric material (4-dimethylaminopyridinium nitrate gallic acid monohydrate) well-designed for non-linear optics. J. Mol. Struct. 1151, 126–134 (2018).  https://doi.org/10.1016/j.molstruc.2017.08.105 CrossRefGoogle Scholar
  6. 6.
    J. Ramajothi, S. Dhanuskodi, K. Nagarajan, Crystal growth, thermal, optical and microhardness studies of tris(thiourea) zinc sulphate-a semiorganic NLO material. Cryst. Res. Technol. 39, 414–420 (2004).  https://doi.org/10.1002/crat.200310204 CrossRefGoogle Scholar
  7. 7.
    M. Packiya Raj, S.M. Ravi Kumar, R. Srineevasan, R. Ravisankar, Synthesis, growth, and structural, optical, mechanical, electrical properties of a new inorganic nonlinear optical crystal: sodium manganese tetrachloride (SMTC). J. Taibah Univ. Sci. 11, 76–84 (2017).  https://doi.org/10.1016/j.jtusci.2015.08.006 CrossRefGoogle Scholar
  8. 8.
    J.H. Joshi, K.P. Dixit, K.D. Parikh, H.O. Jethva, D.K. Kanchan, S. Kalainathan, M.J. Joshi, Effect of Sr2+ on growth and properties of ammonium dihydrogen phosphate single crystal. J. Mater. Sci. 29(7), 5837–5852 (2018).  https://doi.org/10.1007/s10854-018-8556-8 CrossRefGoogle Scholar
  9. 9.
    N. Horiuchi, F. Lefaucheux, A. Ibanez, D. Josse, J. Zyss, Quadratic nonlinear optical coefficients of organic inorganic crystal: 2-amino-5-nitropyridinium chloride. J. Opt. Soc. Am. B 19(8), 1830 (2012)CrossRefGoogle Scholar
  10. 10.
    S.M. Ravi Kumar, S. Selvakumar, P. Sagayaraj, Synthesis, growth and physicochemical properties of an organometallic nonlinear optical crystal: mercury cadmium chloride thiocyanate. Optik 125, 1071–1074 (2014).  https://doi.org/10.1016/j.ijleo.2013.09.001 CrossRefGoogle Scholar
  11. 11.
    C.R. Raja, A.A. Joseph, Crystal growth and comparative studies of XRD, spectral studies on new NLO crystals: l-valine and l-valinium succinate. Spectrochim. Acta A 74, 825–828 (2009).  https://doi.org/10.1016/j.saa.2009.08.023 CrossRefGoogle Scholar
  12. 12.
    R. Srineevasan, R. Rajasekaran, Growth and characterization of new centrosymmetric 2-aminopyridine potassium chloride single crystal for NLO applications. Elix. Cryst. Growth 66, 20551–20555 (2014)Google Scholar
  13. 13.
    R. Srineevasan, R. Rajasekaran, Growth and optical studies of 2-aminopyridine bis thiourea zinc sulphate single crystals for NLO applications. J. Mol. Struct. 1048, 238–243 (2013).  https://doi.org/10.1016/j.molstruc.2013.05.052 CrossRefGoogle Scholar
  14. 14.
    M.A. Rajkumar, S.S.J. Xavier, S. Anbarasu, P.A. Devarajan, Growth and characterization studies of an efficient semiorganic NLO single crystal: 2-amino 5-nitropyridinium sulfamate (2A5NPS) by assembled temperature reduction (ATR) method. Opt. Mater. 55, 153–159 (2016).  https://doi.org/10.1016/j.optmat.2016.03.022 CrossRefGoogle Scholar
  15. 15.
    J. Johnson, R. Srineevasan, D. Sivavishnu, Process development and characterization of centrosymmetricsemiorganic nonlinear optical crystal: 4-dimethylaminopyridine potassium chloride. Phys. B 538, 199–206 (2018).  https://doi.org/10.1016/j.physb.2018.03.038 CrossRefGoogle Scholar
  16. 16.
    J. Johnson, R. Srineevasan, D. Sivavishnu, In depth study on growth aspects and characteristic properties of semiorganic nonlinear optical crystal: 4-dimethylaminopyridine copper chloride. Mater. Sci. Energy Technol. 2, 226–233 (2019).  https://doi.org/10.1016/j.mset.2019.02.001 CrossRefGoogle Scholar
  17. 17.
    I.P. Bincy, R. Gopalakrishnan, Studies on synthesis, growth and characterization of a novel third order nonlinear optical 4-dimethylaminopyridinium p-toluenesulfonate single crystal. Opt. Mater. 37, 267–276 (2014).  https://doi.org/10.1016/j.optmat.2014.06.005 CrossRefGoogle Scholar
  18. 18.
    P. Pandey, R.N. Rai, Synthesis and studies on structural, optical and nonlinear optical properties of novel organic inter-molecular compounds: 4-chloro-3-nitroaniline-3-hydroxy benzaldehyde and urea-4-dimethylaminopyridine. J. Mol. Struct. 1160, 189–197 (2018).  https://doi.org/10.1016/j.molstruc.2018.02.002 CrossRefGoogle Scholar
  19. 19.
    T. Dhanabal, G. Amirthaganesan, M. Dhandapani, Synthesis, spectral, thermal, optical and dielectric studies on 4-dimethylaminopyridinium picrate crystals. Optik (2014).  https://doi.org/10.1016/j.ijleo.2014.03.027 CrossRefGoogle Scholar
  20. 20.
    J. Johnson, R. Srineevasan, D. Sivavishnu, S.E. Allen Moses, Materials synthesis, bandgap energy, yield strength and frequency doubling properties of 4-dimethylaminopyridine lithium chloride: a semiorganic nonlinear optical crystal. Mater. Sci. Energy Technol. 2, 543–550 (2019).  https://doi.org/10.1016/j.mset.2019.05.008 CrossRefGoogle Scholar
  21. 21.
    M. Chao, E. Schempp, R.D. Rosenstein, 4-Dimethylaminopyridine hydrochloride dihydrate. Acta Cryst. B 33, 1820–1823 (1977)CrossRefGoogle Scholar
  22. 22.
    B.B. Koleva, T. Kolev, R. Seidel, M. Spiteller, W.S. Sheldrick, Spectrochim. Acta A 71, 695 (2008)CrossRefGoogle Scholar
  23. 23.
    B.B. Ivanova, M. Arnaudov, H. Mayer-Figge, Polyhedron 24, 1624 (2005)CrossRefGoogle Scholar
  24. 24.
    G. Varsanyi, Vibrational Spectra of Benzene Derivatives (Academic Press, New York, 1969)Google Scholar
  25. 25.
    N. Sundaraganesan, S. Kalaichelvan, C. Meganathan, B. Dominic Joshua, J. Cornard, FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 4-N,N-dimethylamino pyridine. Spectrochim. Acta A 71, 898–906 (2008).  https://doi.org/10.1016/j.saa.2008.02.016 CrossRefGoogle Scholar
  26. 26.
    K. Thirupugalmani, S. Karthick, G. Shanmugam, V. Kannan, B. Sridhar, K. Nehru, S. Brahadeeswaran, Second- and third-order nonlinear optical and quantum chemical studies on 2-amino-4-picolinium-nitrophenolate-nitrophenol: a phasematchable organic single crystal. Opt. Mater. 49, 158–170 (2015).  https://doi.org/10.1016/j.optmat.2015.09.014 CrossRefGoogle Scholar
  27. 27.
    P. Justin, K. Anitha, S.S.R. Inbanathan, M. Fleck, Growth, structural, thermal, mechanical, optical and third order nonlinear optical studies of 3-hydroxy 2-nitropyridine single crystal. Opt. Mater. 86, 562–570 (2018).  https://doi.org/10.1016/j.optmat.2018.10.047 CrossRefGoogle Scholar
  28. 28.
    J.J. Rodrigues Jr., L. Misoguti, F.D. Nunes, C.R. Mendonca, S.C. Zilio, Optical properties of l-threonine crystals. Opt. Mater. 22, 235–240 (2003)CrossRefGoogle Scholar
  29. 29.
    S.E. Allen Moses, S. Tamilselvan, S.M. Ravi Kumar, G. Vinitha, T. Ashok Hegde, M. Vimalan, S. Varalakshmi, S. Sivaraj, Synthesis, growth and physicochemical properties ofnew organicnonlinear optical crystal l-threoninium tartrate (LTT) for frequency conversion. Mater. Sci. Energy Technol. (2019).  https://doi.org/10.1016/j.mset.2019.05.003 CrossRefGoogle Scholar
  30. 30.
    P. Karuppasamy, T. Kamalesh, V. Mohankumar, S. Abdul Kalam, M. Senthil Pandian, P. Ramasamy, S. Verma, S. Venugopal Rao, Synthesis, growth, structural, optical, thermal, laser damage threshold and computational perspectives of 4-nitrophenol 4-aminobenzoic acid monohydrate (4NPABA) single crystal. J. Mol. Struct. 1176, 254–265 (2019).  https://doi.org/10.1016/j.molstruc.2018.08.074 CrossRefGoogle Scholar
  31. 31.
    P. Karuppasamy, V. Sivasubramani, M. Senthil Pandian, P. Ramasamy, RSC Adv. (2016).  https://doi.org/10.1039/C6RA21590D CrossRefGoogle Scholar
  32. 32.
    M.A. Kaid, A. Ashour, Appl. Surf. Sci. 253, 3029–3033 (2007)CrossRefGoogle Scholar
  33. 33.
    J.H. Joshi, S. Kalainathan, D.K. Kanchan, M.J. Joshi, K.D. Parikh, Crystal growth, A.C. electrical and nonlinear optical studies of pure and dl-methionine doped ammonium dihydrogen phosphate single crystals. J. Mater. Sci. (2019).  https://doi.org/10.1007/s10854-018-00577-2 CrossRefGoogle Scholar
  34. 34.
    J.H. Joshi, S. Kalainathan, M.J. Joshi, K.D. Parikh, Influence of l-serine on microstructural, spectroscopic, electrical and nonlinear optical performance of ammonium dihydrogen phosphate single crystal. J. Mater. Sci. (2019).  https://doi.org/10.1007/s10854-019-01793-0 CrossRefGoogle Scholar
  35. 35.
    J.H. Joshi, G.M. Joshi, M.J. Joshi, K.D. Parikh, Complex impedance, FT-Raman, and photoluminescence spectroscopic studies of pure and l-phenylalanine doped ammonium dihydrogen phosphate single crystals: the correlation with hydrogen bonding defect. Ionics (2019).  https://doi.org/10.1007/s11581-018-2834-6 CrossRefGoogle Scholar
  36. 36.
    M. Saravanan, Growth and characterization of dexterous nonlinear optical material: dimethyl amino pyridinium 4-nitrophenolate 4-nitrophenol (DMAPNP). Opt. Mater. 58, 327–341 (2016).  https://doi.org/10.1016/j.optmat.2016.06.002 CrossRefGoogle Scholar
  37. 37.
    J. Chandrasekaran, B. Babu, S. Balaprabhakaran, P. Ilayabarathi, P. Maadeswaran, K. Sathishkumar, Optik 124, 1250–1253 (2013)CrossRefGoogle Scholar
  38. 38.
    P. Anandan, S. Vetrivel, R. Jayavel, C. Vedhi, G. Ravi, G. Bhagavannarayana, J. Phys. Chem. Solids 73, 1296–1301 (2012)CrossRefGoogle Scholar
  39. 39.
    M. Mahadevan, P. Anandan, K. Ramachandran, M. Arivandhan, Y. Hayakawa, Studies on the growth aspects and characterization of sodium para-nitro phenolate single crystals for nonlinear optical applications. Optik 125, 5515–5518 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Rajkumar, M. Saravanabhavan, A. Chandramohan, Synthesis, structural, thermal, mechanical, second harmonic generation efficiency and laser damage threshold studies of 4-dimethylaminopyridinium-3,5-dicarboxybenzoate trihydrate single crystal. Opt. Mater. 72, 247–256 (2017).  https://doi.org/10.1016/j.optmat.2017.06.011 CrossRefGoogle Scholar
  41. 41.
    D. Xue, K. Kitamura, Dielectric characterization of the defect concentration in lithium niobate single crystals. Solid State Commun. 122, 537–541 (2002).  https://doi.org/10.1016/S0038-1098(02)00180-1 CrossRefGoogle Scholar
  42. 42.
    J.H. Joshi, D.K. Kanchan, H.O. Jethva, M.J. Joshi, K.D. Parikh, Dielectric relaxation, protonic defect, conductivity mechanisms, complex impedance and modulus spectroscopic studies of pure and l-threonine-doped ammonium dihydrogen phosphate. Ionics 24(7), 1995–2016 (2018).  https://doi.org/10.1007/s11581-018-2461-2 CrossRefGoogle Scholar
  43. 43.
    G.J. Shanmuga Sundar, S.M. Ravi Kumar, M. Packiya Raj, S. Selvakumar, Synthesis, growth, optical, mechanical and dielectric studies on NLO active monometallic zinc iodate [Zn(IO3)2] crystal for frequency conversion. Mater. Res. Bull. 112, 22–27 (2019).  https://doi.org/10.1016/j.materresbull.2018.11.043 CrossRefGoogle Scholar
  44. 44.
    J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63–73 (2017).  https://doi.org/10.1016/j.materresbull.2017.04.013 CrossRefGoogle Scholar
  45. 45.
    J.S. Pan, X.W. Zhang, Structure and dielectric behavior of Pb(Mg1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3–Pb(Zn1/3Nb2/3)O3–PbTiO3 ferroelectric ceramics near the morphotropic phase boundary. Acta Mater. 54(5), 1343–1348 (2006)CrossRefGoogle Scholar
  46. 46.
    J.H. Joshi, G.M. Joshi, M.J. Joshi, H.O. Jethva, K.D. Parikh, New J. Chem. (2018).  https://doi.org/10.1039/C8NJ03393E CrossRefGoogle Scholar
  47. 47.
    E.M. Onitsch, The present status of testing the hardness of materials. Mikroskopie 95, 12–14 (1956)Google Scholar
  48. 48.
    O. Sahin, O. Uzun, U. Kolemen, B. Duzgun, N. Ucar, Indentation size effect and microhardness study of β-Sn single crystals. Chin. Phys. Lett. 22, 3137–3140 (2005)CrossRefGoogle Scholar
  49. 49.
    S.K. Kurtz, T.T. Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798–3813 (1986).  https://doi.org/10.1063/1.1656857 CrossRefGoogle Scholar
  50. 50.
    K.D. Parikh, D.J. Dave, B.B. Parekh, M.J. Joshi, Thermal, FT–IR and SHG efficiency studies of l-arginine doped KDP crystals. Bull. Mater. Sci. 30(2), 105–112 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PG & Research Department of PhysicsGovernment Arts CollegeTiruvannamalaiIndia

Personalised recommendations