Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21138–21149 | Cite as

Effect of Mn2+ as a redox additive on ternary doped polyaniline-metal nanocomposite: an efficient dielectric material

  • C. Anju
  • Shiny PalattyEmail author
Article
  • 34 Downloads

Abstract

An efficient ternary doped polyaniline-metal nanocomposite was synthesized via in situ rapid mixing chemical oxidative polymerization method. The detailed morphological and structural analysis shows the incorporation of binary transition metals (Fe & Mn) in a highly crystalline PANI matrix with a modified flaky morphology. Further dielectric and electrochemical characterizations substantiate a high dielectric constant and specific capacitance of about 613F/g with a good cyclic stability for the as synthesized PANI material.

Notes

Acknowledgements

The authors acknowledge Director and Principal, Rajagiri School of Engineering & Technology and Bharata Mata College for the support of this work. Analytical support from Sophisticated Test and Instrumentation Centre, CUSAT, School of Pure & Applied Physics, Mahatma Gandhi University and Department of Physics, Maharajas College are also acknowledged.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

10854_2019_2484_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1507 kb)

References

  1. 1.
    K. Le, M. Gao, W. Liu, J. Liu, Z. Wang, F. Wang, V. Murugadoss, S. Wu, T. Ding, Z. Guo, MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochim. Acta 323, 134826 (2019).  https://doi.org/10.1016/j.electacta.2019.134826 CrossRefGoogle Scholar
  2. 2.
    W. Du, X. Wang, J. Zhan, X. Sun, L. Kang, F. Jiang, X. Zhang, Q. Shao, M. Dong, H. Liu, V. Murugadoss, Z. Guo, Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta (2018).  https://doi.org/10.1016/j.electacta.2018.11.074 CrossRefGoogle Scholar
  3. 3.
    K. Le, Z. Wang, F. Wang, Q. Wang, Q. Shao, V. Murugadas, S. Wu, W. Liu, J. Liu, Q. Gao, Z. Guo, Sandwich-like NiCo layered double hydroxides/reduced graphene oxide nanocomposite cathode for high energy density asymmetric supercapacitors. Dalton Trans. (2019).  https://doi.org/10.1039/c9dt00615j CrossRefGoogle Scholar
  4. 4.
    Y. Ma, M. Ma, X. Yin, Q. Shao, N. Lu, Y. Feng, Y. Lu, Tuning polyaniline nanostructures via end group substitutions and their morphology dependent electrochemical performances. Polymer (2018).  https://doi.org/10.1016/j.polymer.2018.09.051 CrossRefGoogle Scholar
  5. 5.
    Y. Ma, C. Hou, H. Zhang, Q. Zhang, H. Liu, S. Wu, Electrochimica acta three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochim. Acta 315, 114–123 (2019).  https://doi.org/10.1016/j.electacta.2019.05.073 CrossRefGoogle Scholar
  6. 6.
    K. Sun, J. Dong, Z. Wang, Z. Wang, G. Fan, Q. Hou, L. An, M. Dong, R. Fan, Z. Guo, Tunable negative permittivity in flexible graphene/PDMS metacomposites. J. Phys. Chem. C (2019).  https://doi.org/10.1021/acs.jpcc.9b06753 CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, Y. An, L. Wu, H. Chen, Z. Li, H. Dou, V. Murugadoss, J. Fan, X. Zhang, X. Mai, Z. Guo, Metal-free energy storage systems: combining batteries with capacitors based on methylene blue functionalized graphene cathode. Mater. Chem. A (2019).  https://doi.org/10.1039/C9TA06734E CrossRefGoogle Scholar
  8. 8.
    Y. Zhai, J. Wang, Q. Gao, Y. Fan, C. Hou, Y. Hou, H. Liu, Q. Shao, S. Wu, L. Zhao, T. Ding, F. Dang, Z. Guo, Highly efficient cobalt nanoparticles anchored porous N-doped carbon nanosheets electrocatalysts for Li-O2 batteries. J. Catal. 377, 534–542 (2019).  https://doi.org/10.1016/j.jcat.2019.07.055 CrossRefGoogle Scholar
  9. 9.
    C. Hou, J. Wang, W. Du, J. Wang, Y. Du, C. Liu, J. Zhang, H. Hou, F. Dang, L. Zhao, Z. Guo, Molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion. J. Mater. Chem. A 7, 13460–13472 (2019).  https://doi.org/10.1039/c9ta03551f CrossRefGoogle Scholar
  10. 10.
    M. Liu, Z. Yang, H. Sun, C. Lai, X. Zhao, H. Peng, T. Liu, A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium—sulfur batteries. Nano Res. (2016).  https://doi.org/10.1007/s12274-016-1244-1 CrossRefGoogle Scholar
  11. 11.
    M. Liu, Y. Liu, Y. Yan, F. Wang, J. Liu, T. Liu, A highly conductive carbon-sulfur film with interconnected mesopores as advanced cathode for lithium-sulfur batteries. ChemComm (2017).  https://doi.org/10.1039/C7CC04523A CrossRefGoogle Scholar
  12. 12.
    J. Tian, Q. Shao, X. Dong, J. Zheng, D. Pan, X. Zhang, H. Cao, L. Hao, J. Liu, X. Mai, Z. Guo, Electrochim. Acta (2018).  https://doi.org/10.1016/j.electacta.2017.12.094 CrossRefGoogle Scholar
  13. 13.
    V. Murugadas, J. Lin, H. Liu, X. Mai, T. Dina, Z. Guo, S. Angaiah, Optimizing graphene content in nise/graphene nanohybrid counter electrode on boosting photovoltaic performance of dye-sensitized solar cells. Nanoscale (2019).  https://doi.org/10.1039/C9NR07060E CrossRefGoogle Scholar
  14. 14.
    Y. Xie, X. Sha, Electrochemical cycling stability of nickel (II) coordinated polyaniline. Synth. Met. 237, 29–39 (2018).  https://doi.org/10.1016/j.synthmet.2018.01.011 CrossRefGoogle Scholar
  15. 15.
    C. Hu, S. Chen, Y. Wang, X. Peng, W. Zhang, J. Chen, Excellent electrochemical performances of cabbage-like polyaniline fabricated by template synthesis. J. Power Sources 321, 94–101 (2016).  https://doi.org/10.1016/j.jpowsour.2016.04.113 CrossRefGoogle Scholar
  16. 16.
    H. Guan, L. Fan, H. Zhang, X. Qu, Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim. Acta 56, 964–968 (2010).  https://doi.org/10.1016/j.electacta.2010.09.078 CrossRefGoogle Scholar
  17. 17.
    Y. Wang, Y. Song, Y. Xia, Characterization and applications chemical functional materials. Chem. Soc. Rev. 45, 5925–5950 (2016).  https://doi.org/10.1039/C5CS00580A CrossRefGoogle Scholar
  18. 18.
    M.N. Nadagouda, R.S. Varma, Green approach to bulk and template-free synthesis of thermally stable reduced polyaniline nanofibers for capacitor applications. Green Chem. 9, 632 (2007).  https://doi.org/10.1039/b614633c CrossRefGoogle Scholar
  19. 19.
    S.A. El-khodary, G.M. El-enany, M. El-okr, M. Ibrahim, Modified iron doped polyaniline/sulfonated carbon nanotubes for all symmetric solid-state supercapacitor. Synth. Met. 233, 41–51 (2017).  https://doi.org/10.1016/j.synthmet.2017.09.002 CrossRefGoogle Scholar
  20. 20.
    S. Ghosh, T. Maiyalagan, R.N. Basu, Nanostructured conducting polymers for energy applications: towards a sustainable platform. Nanoscale 8, 6921–6947 (2016).  https://doi.org/10.1039/C5NR08803H CrossRefGoogle Scholar
  21. 21.
    G. Ciri, Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 177, 1–47 (2013).  https://doi.org/10.1016/j.synthmet.2013.06.004 CrossRefGoogle Scholar
  22. 22.
    D.M. Jundale, S.T. Navale, G.D. Khuspe, D.S. Dalavi, P.S. Patil, V.B. Patil, Polyaniline-CuO hybrid nanocomposites: synthesis, structural, morphological, optical and electrical transport studies. J. Mater. Sci.: Mater. Electron. (2016).  https://doi.org/10.1007/s10854-013-1280-5 CrossRefGoogle Scholar
  23. 23.
    E. Hur, A. Arslan, Cobalt ion-doped polyaniline, poly(-methylaniline), and poly(-ethylaniline): electrosynthesis and characterisation using electrochemical methods in acidic solutions. Chem. Papers (2014).  https://doi.org/10.2478/s11696-014-0605-z CrossRefGoogle Scholar
  24. 24.
    L. Tang, F. Duan, M. Chen, Fabrication of ferric chloride doped polyaniline/multilayer super-short carbon nanotube nanocomposites for supercapacitor applications. J. Solid State Electrochem. (2016).  https://doi.org/10.1007/s10008-016-3264-x CrossRefGoogle Scholar
  25. 25.
    L.N. Shubha, P. Madhusudana Rao, Temperature characterization of dielectric permittivity and AC conductivity of nano copper oxide-doped polyaniline composite. J. Adv. Dielectr. 6, 1650018 (2016).  https://doi.org/10.1142/s2010135x16500181 CrossRefGoogle Scholar
  26. 26.
    C. Li, H. Bai, G. Shi, Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. (2009).  https://doi.org/10.1039/b816681c CrossRefGoogle Scholar
  27. 27.
    S. Saha, P. Samanta, N. Chandra, T. Kuila, A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage 17, 181–202 (2018).  https://doi.org/10.1016/j.est.2018.03.006 CrossRefGoogle Scholar
  28. 28.
    N. Parveen, N. Mahato, M. Omaish, M. Hwan, Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline @ graphene nanocomposite synthesized at elevated temperature. Compos. B 87, 281–290 (2016).  https://doi.org/10.1016/j.compositesb.2015.10.029 CrossRefGoogle Scholar
  29. 29.
    S. Dhibar, P. Bhattacharya, G. Hatui, S. Sahoo, C.K. Das, transition metal-doped polyaniline/single-walled carbon nanotubes nanocomposites: efficient electrode material for high performance supercapacitors. ACS Sustain. Chem. Eng. (2014).  https://doi.org/10.1021/sc5000072 CrossRefGoogle Scholar
  30. 30.
    T. Sen, S. Mishra, N.G. Shimpi, A β Cyclodextrin based binary dopant for polyaniline: structural, thermal, electrical, and sensing performance. Mater. Sci. Eng. B 220, 13–21 (2017).  https://doi.org/10.1016/j.mseb.2017.03.003 CrossRefGoogle Scholar
  31. 31.
    H. Gu, X. Xu, J. Cai, S. Wei, H. Wei, H. Liu, D.P. Young, Q. Shao, S. Wu, T. Ding, Z. Guo, Controllable organic magnetoresistance in polyaniline coated poly(p-phenylene-2,6-benzobisoxazole) short fibers. ChemComm (2019).  https://doi.org/10.1039/c9cc04789a CrossRefGoogle Scholar
  32. 32.
    Y. Ma, Z. Zhuang, M. Ma, Y. Yang, W. Li, M. Dong, S. Wu, T. Ding, Z. Guo, Solid polyaniline dendrites consisting of high aspect ratio branches self- assembled using sodium lauryl sulfonate as soft templates: synthesis and electrochemical performance. Polymer (Guildf) 182, 121808 (2019).  https://doi.org/10.1016/j.polymer.2019.121808 CrossRefGoogle Scholar
  33. 33.
    Q. Hu, N. Zhou, K. Gong, H. Liu, Q. Liu, Intracellular polymer substances induced conductive polyaniline for improved methane production from anaerobic wastewater treatment. ACS Sustain. Chem. Eng. (2019).  https://doi.org/10.1021/acssuschemeng.8b05847 CrossRefGoogle Scholar
  34. 34.
    U. Bogdanovic, V. Vodnik, M. Mitric, S. Dimitrijevic, S.D. Skapin, V. Zunic, M. Budimir, M. Stoiljkovic, Nanomaterial with high antimicrobial efficacy copper/polyaniline nanocomposite. ACS Appl. Mater. Interfaces (2015).  https://doi.org/10.1021/am507746m CrossRefGoogle Scholar
  35. 35.
    D. Zhou, B. Che, X. Lu, Rapid one-pot electrodeposition of polyaniline/manganese dioxide hybrids: a facile approach to stable high-performance anodic electrochromic materials. J. Mater. Chem. C 5, 1758–1766 (2017).  https://doi.org/10.1039/C6TC05216A CrossRefGoogle Scholar
  36. 36.
    L. Horta-romarís, M.V. González-rodríguez, A. Lasagabáster, Thermoelectric properties and intrinsic conduction processes in DBSA and NaSIPA doped polyanilines. Synth. Met. 243, 44–50 (2018).  https://doi.org/10.1016/j.synthmet.2018.06.002 CrossRefGoogle Scholar
  37. 37.
    S. Cho, K. Shin, J. Jang, Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. ACS Appl. Mater. Interfaces 5, 9186–9193 (2013)CrossRefGoogle Scholar
  38. 38.
    A.K. Mukherjee, R. Menon, Role of mesoscopic morphology in charge transport of doped polyaniline. Pramana 58, 233–239 (2002)CrossRefGoogle Scholar
  39. 39.
    D. Ghosh, S. Giri, A. Mandal, C.K. Das, Supercapacitor based on H+ and Ni2+ co-doped polyaniline–MWCNTs nanocomposite: synthesis and electrochemical characterization. RSC Adv. 3, 11676 (2013).  https://doi.org/10.1039/c3ra40955d CrossRefGoogle Scholar
  40. 40.
    C. Anju, S. Palatty, Ternary doped plyaniline-metal nanocomposite as high performance supercapacitive material. Electrochim. Acta 299, 626–635 (2019)CrossRefGoogle Scholar
  41. 41.
    M. Vellakkat, A. Kamath, S. Raghu, S. Chapi, D. Hundekal, Dielectric constant and transport mechanism of percolated polyaniline nanoclay composites. Ind. Eng. Chem. Res. 53, 16873–16882 (2014)CrossRefGoogle Scholar
  42. 42.
    J. Jeon, J.O. Neal, L. Shao, J.L. Lutkenhaus, Charge storage in polymer acid-doped polyaniline-based layer-by- layer electrodes. ACS Appl. Mater. Interfaces. 5, 10127–10136 (2013)CrossRefGoogle Scholar
  43. 43.
    M.H. AbdelRehim, A.M. Youssef, H. Al-Said, T. Gamal, M. Aboaly, Polyaniline and modified titanate nanowires layerby-layer plastic electrode for flexible electronic device applications. RSC Adv. 6, 94556 (2016)CrossRefGoogle Scholar
  44. 44.
    X.S. Du, C.F. Zhou, Y.W. Mai, Facile synthesis of Hierarchical polyaniline nanostructures with dendritic nanofibers as scaffolds. J. Phys. Chem. C 112, 19836–19840 (2008).  https://doi.org/10.1021/jp8069404 CrossRefGoogle Scholar
  45. 45.
    S. Cho, M. Kim, J.S. Lee, J. Jang, Polypropylene/polyaniline nanofiber/reduced graphene oxide nanocomposite with enhanced electrical, dielectric, and ferroelectric properties for a high energy density capacitor. ACS Appl. Mater. Interfaces 7, 22301–22314 (2015).  https://doi.org/10.1021/acsami.5b05467 CrossRefGoogle Scholar
  46. 46.
    J. Zhu, H. Gu, Z. Luo, N. Haldolaarachige, D.P. Young, S. Wei, Z. Guo, Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties. Langmuir 28, 10246–10255 (2012).  https://doi.org/10.1021/la302031f CrossRefGoogle Scholar
  47. 47.
    K. Sun, J. Xin, Z. Wang, S. Feng, Z. Wang, R. Fan, H. Liu, Weakly negative permittivity and low frequency dispersive behavior in graphene/epoxy metacomposites. J. Mater. Sci.: Mater. Electron. (2019).  https://doi.org/10.1007/s10854-019-01846-4 CrossRefGoogle Scholar
  48. 48.
    X. Yao, X. Kou, J. Qiu, M.G. Moloney, Generation mechanism of negative dielectric properties of metallic oxide crystals/PANI. Composites (2016).  https://doi.org/10.1021/acs.jpcc.5b12352 CrossRefGoogle Scholar
  49. 49.
    K.L. Bhowmik, K. Deb, A. Bera, R.K. Nath, B. Saha, Charge transport through polyaniline incorporated electrically conducting functional paper charge transport through polyaniline incorporated electrically conducting functional paper. J. Phys. Chem. C (2016).  https://doi.org/10.1021/acs.jpcc.5b08650 CrossRefGoogle Scholar
  50. 50.
    C. Dhand, M. Das, M. Datta, B.D. Malhotra, Biosensors and bioelectronics recent advances in polyaniline based biosensors. Biosens. Bioelectron. 26, 2811–2821 (2011).  https://doi.org/10.1016/j.bios.2010.10.017 CrossRefGoogle Scholar
  51. 51.
    C.M. De León-almazan, I.A. Estrada-moreno, U. Páramo-garcía, J.L. Rivera-armenta, Polyaniline/clay nanocomposites. a comparative approach on the doping acid and the clay spacing technique. Synth. Met. 236, 61–67 (2018).  https://doi.org/10.1016/j.synthmet.2018.01.006 CrossRefGoogle Scholar
  52. 52.
    M. Shi, Y. Zhang, M. Bai, B. Li, Facile fabrication of polyaniline with coral-like nanostructure as electrode material for supercapacitors. Synth. Met. 233, 74–78 (2017).  https://doi.org/10.1016/j.synthmet.2017.09.007 CrossRefGoogle Scholar
  53. 53.
    S.K. Simotwo, C. Delre, V. Kalra, Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers. ACS Appl. Mater. Interfaces. (2016).  https://doi.org/10.1021/acsami.6b03463 CrossRefGoogle Scholar
  54. 54.
    D. Xu, Q. Xu, K. Wang, J. Chen, Z. Chen, Fabrication of Free-Standing Hierarchical Carbon Nano fi ber/Graphene Oxide/Polyaniline Films for Supercapacitors. ACS Appl. Mater. Interfaces. 6, 200–209 (2014)CrossRefGoogle Scholar
  55. 55.
    W. Fan, C. Zhang, W.W. Tjiu, K.P. Pramoda, C. He, T. Liu, Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl. Mater. Interfaces (2013).  https://doi.org/10.1021/am4003827 CrossRefGoogle Scholar
  56. 56.
    A.K. Thakur, A.B. Deshmukh, R. Bilash, I. Karbhal, M. Majumder, M.V. Shelke, Facile synthesis and electrochemical evaluation of PANI/CNT/MoS 2 ternary composite as an electrode material for high performance supercapacitor. Mater. Sci. Eng. B 223, 24–34 (2017).  https://doi.org/10.1016/j.mseb.2017.05.001 CrossRefGoogle Scholar
  57. 57.
    J. Plawan Kumar, K. Santosh Singh, G. Suresh, K. Sreekumar, B. Nirmalya, Pb2 + —N bonding chemistry: recycling of polyaniline-pb nanocrystals waste for generating high-performance supercapacitor electrodes. J. Phys. Chem. C (2015).  https://doi.org/10.1021/acs.jpcc.5b11217 CrossRefGoogle Scholar
  58. 58.
    A. Sajedi-moghaddam, C.C. Mayorga-martinez, D. Bous, Black phosphorus nano flakes/polyaniline hybrid material for high-performance pseudocapacitors (2017).  https://doi.org/10.1021/acs.jpcc.7b06958 CrossRefGoogle Scholar
  59. 59.
    L. Mieko, D. Alves, D.L. Almeida, S.S. Oishi, A.B. Couto, Constituent material in fl uence on the electrochemical performance and supercapacitance of PANI/diamond/CF composite. Mater. Sci. Eng. B 228, 249–260 (2018).  https://doi.org/10.1016/j.mseb.2017.12.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basic Sciences & HumanitiesRajagiri School of Engineering & TechnologyErnakulamIndia
  2. 2.Department of ChemistryBharata Mata CollegeErnakulamIndia

Personalised recommendations