Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 21117–21125 | Cite as

Electrode buffer layers via networks of polythiophene/polyaniline bottlebrushes and carbon nanotubes in organic solar cells

  • Nafiseh Sorkhishams
  • Bakhshali MassoumiEmail author
  • Mahnaz Saraei
  • Samira AgbolaghiEmail author


A new p-type electrode buffer layer (EBL) material was developed by the networks composed of multi-walled CNTs (MWCNTs) and poly(3-thiophene ethanol) (P3ThEt)-g-polyaniline (PANI) bottlebrush copolymers. The nanocomposites of CNT:P3ThEt-g-PANI were prepared in three different thicknesses (5, 15, and 25 nm) and employed as hole transport layer (HTL) in poly(3-hexylthiophene) (P3HT):phenyl-C71-butyric acid methyl ester (PC71BM) solar cells. A trade-off was detected between the sheet resistance and transmittance by elevating the HTL thickness for both pure CNT and CNT:P3ThEt-g-PANI nanocomposites. The CNT:P3ThEt-g-PANI thin films, in particular with an optimal thickness of 15 nm, were the turning points for equilibrating the film thickness, transmittance, surface roughness, and sheet resistance values. The smoothest thin films of CNT:P3ThEt-g-PANI with the thickness of 15 nm, the transmittance of 85–89%, and the sheet resistance of 5.6 × 104 Ω/sq reflected the best results of 12.85 mA/cm2, 60.7%, and 0.68 V. Hence, a maximum power conversion efficiency (PCE) of 5.30% was acquired among all solar cells fabricated in current work. After peaking at 15 nm, the second group of proper results was recognized in CNT:P3ThEt-g-PANI (25 nm)/P3HT:PC71BM photovoltaics (10.37 mA/cm2, 49.0%, and 0.62 V). The PCE of 3.15% for this system was even greater than the ideal performance (= 2.94%) detected in the pure CNT (15 nm)/P3HT:PC71BM solar cells.



We express our gratitude to the Payame Noor University as well as Azarbaijan Shahid Madani University for their cooperation.

Supplementary material

10854_2019_2482_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1150 kb)


  1. 1.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6(9), 591–595 (2012)Google Scholar
  2. 2.
    T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang, X. Gong, Inverted polymer solar cells with 84% efficiency by conjugated polyelectrolyte. Energy Environ. Sci. 5(8), 8208–8214 (2012)Google Scholar
  3. 3.
    S. Liu, K. Zhang, J. Lu, J. Zhang, H.L. Yip, F. Huang, Y. Cao, High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. J. Am. Chem. Soc. 135(41), 15326–15329 (2013)Google Scholar
  4. 4.
    K. Li, Z. Li, K. Feng, X. Xu, L. Wang, Q. Peng, Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J. Am. Chem. Soc. 135(36), 13549–13557 (2013)Google Scholar
  5. 5.
    X. Guo, M. Zhang, W. Ma, L. Ye, S. Zhang, S. Liu, H. Ade, F. Huang, J. Hou, Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells based on PBDTTT-C-T/PC71BM. Adv. Mater. 26(24), 4043–4049 (2014)Google Scholar
  6. 6.
    Y. Zhou, C. Fuentes-Hernandez, J.W. Shim, T.M. Khan, B. Kippelen, High performance polymeric charge recombination layer for organic tandem solar cells. Energy Environ. Sci. 5(12), 9827–9832 (2012)Google Scholar
  7. 7.
    S.H. Liao, H.J. Jhuo, Y.S. Cheng, S.A. Chen, Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 25(34), 4766–4771 (2013)Google Scholar
  8. 8.
    C.Y. Chang, L. Zuo, H.L. Yip, Y. Li, C.Z. Li, C.S. Hsu, Y.J. Cheng, H. Chen, A.K.Y. Jen, A versatile fluoro-containing low-bandgap polymer for efficient semitransparent and tandem polymer solar cells. Adv. Funct. Mater. 23(40), 5084–5090 (2013)Google Scholar
  9. 9.
    Y. Sun, S.C. Chien, H.L. Yip, Y. Zhang, K.S. Chen, D.F. Zeigler, F.C. Chen, B. Lin, A.K.Y. Jen, Chemically doped and cross-linked hole-transporting materials as an efficient anode buffer layer for polymer solar cells. Chem. Mater. 23(22), 5006–5015 (2011)Google Scholar
  10. 10.
    Y.M. Chang, R. Zhu, E. Richard, C.C. Chen, G. Li, Y. Yang, Electrostatic self-assembly conjugated polyelectrolyte-surfactant complex as an interlayer for high performance polymer solar cells. Adv. Funct. Mater. 22(15), 3284–3289 (2012)Google Scholar
  11. 11.
    C. Gu, Y. Chen, Z. Zhang, S. Xue, S. Sun, K. Zhang, C. Zhong, H. Zhang, Y. Pan, Y. Lv, Y. Yang, Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics. Adv. Mater. 25(25), 3443–3448 (2013)Google Scholar
  12. 12.
    H. Zhou, Y. Zhang, C.K. Mai, S.D. Collins, T.Q. Nguyen, G.C. Bazan, A.J. Heeger, Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells. Adv. Mater. 26(5), 780–785 (2014)Google Scholar
  13. 13.
    C. Xu, J. Wang, Q. An, X. Ma, Z. Hu, J. Gao, J. Zhang, F. Zhang, Ternary small molecules organic photovoltaics exhibiting 12.84% efficiency. Nano Energy (2019). CrossRefGoogle Scholar
  14. 14.
    Z. Hu, F. Zhang, Q. An, M. Zhang, X. Ma, J. Wang, J. Zhang, J. Wang, Ternary nonfullerene polymer solar cells with a power conversion efficiency of 11.6% by inheriting the advantages of binary cells. ACS Energy Lett. 3(3), 555–561 (2018)Google Scholar
  15. 15.
    X. Ma, M. Luo, W. Gao, J. Yuan, Q. An, M. Zhang, Z. Hu, J. Gao, J. Wang, Y. Zou, C. Yang, Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. J. Mater. Chem. A 7(13), 7843–7851 (2019)Google Scholar
  16. 16.
    M. Zhang, Z. Xiao, W. Gao, Q. Liu, K. Jin, W. Wang, Y. Mi, Q. An, X. Ma, X. Liu, C. Yang, Over 13% efficiency ternary nonfullerene polymer solar cells with tilted up absorption edge by incorporating a medium bandgap acceptor. Adv. Energy Mater. 8(30), 1801968 (2018)Google Scholar
  17. 17.
    J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013)Google Scholar
  18. 18.
    F. Zhang, M. Ceder, O. Inganäs, Enhancing the photovoltage of polymer solar cells by using a modified cathode. Adv. Mater. 19(14), 1835–1838 (2007)Google Scholar
  19. 19.
    C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, P. Denk, Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80(7), 1288–1290 (2002)Google Scholar
  20. 20.
    P. Peumans, S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C 60 photovoltaic cells. Appl. Phys. Lett. 79(1), 126–128 (2001)Google Scholar
  21. 21.
    S.A. Carter, M. Angelopoulos, S. Karg, P.J. Brock, J.C. Scott, Polymeric anodes for improved polymer light-emitting diode performance. Appl. Phys. Lett. 70(16), 2067–2069 (1997)Google Scholar
  22. 22.
    T.M. Brown, J.S. Kim, R.H. Friend, F. Cacialli, R. Daik, W.J. Feast, Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly (3, 4-ethylene dioxythiophene) hole injection layer. Appl. Phys. Lett. 75(12), 1679–1681 (1999)Google Scholar
  23. 23.
    S. Khodabakhsh, B.M. Sanderson, J. Nelson, T.S. Jones, Using self-assembling dipole molecules to improve charge collection in molecular solar cells. Adv. Funct. Mater. 16(1), 95–100 (2006)Google Scholar
  24. 24.
    H. Yan, P. Lee, N.R. Armstrong, A. Graham, G.A. Evmenenko, P. Dutta, T.J. Marks, High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. J. Am. Chem. Soc. 127(9), 3172–3183 (2005)Google Scholar
  25. 25.
    J. Van De Lagemaat, T.M. Barnes, G. Rumbles, S.E. Shaheen, T.J. Coutts, C. Weeks, I. Levitsky, J. Peltola, P. Glatkowski, Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode. Appl. Phys. Lett. 88(23), 233503(1-5) (2006)Google Scholar
  26. 26.
    K. Norrman, M.V. Madsen, S.A. Gevorgyan, F.C. Krebs, Degradation patterns in water and oxygen of an inverted polymer solar cell. J. Am. Chem. Soc. 132(47), 16883–16892 (2010)Google Scholar
  27. 27.
    A.W. Hains, T.J. Marks, High-efficiency hole extraction/electron-blocking layer to replace poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) in bulk-heterojunction polymer solar cells. Appl. Phys. Lett. 92(2), 023504(1–3) (2008)Google Scholar
  28. 28.
    M. Kemerink, S. Timpanaro, M.M. De Kok, E.A. Meulenkamp, F.J. Touwslager, Three-dimensional inhomogeneities in PEDOT: PSS films. J. Phys. Chem. B 108(49), 18820–18825 (2004)Google Scholar
  29. 29.
    L.M. Chen, Z. Xu, Z. Hong, Y. Yang, Interface investigation and engineering–achieving high performance polymer photovoltaic devices. J. Mater. Chem. 20(13), 2575–2598 (2010)Google Scholar
  30. 30.
    M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89(14), 143517(1–3) (2006)Google Scholar
  31. 31.
    S.K. Hau, H.L. Yip, N.S. Baek, J. Zou, K. O’Malley, A.K.Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92(25), 225 (2008)Google Scholar
  32. 32.
    J.W. Jung, J.U. Lee, W.H. Jo, High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer. J. Phys. Chem. C 114(1), 633–637 (2009)Google Scholar
  33. 33.
    W.J. Bae, K.H. Kim, Y.H. Park, W.H. Jo, A novel water-soluble and self-doped conducting polyaniline graft copolymer. Chem. Commun. 22, 2768–2769 (2003)Google Scholar
  34. 34.
    W.J. Bae, K.H. Kim, W.H. Jo, Y.H. Park, A water-soluble and self-doped conducting polypyrrole graft copolymer. Macromolecules 38(4), 1044–1047 (2005)Google Scholar
  35. 35.
    W.J. Ke, G.H. Lin, C.P. Hsu, C.M. Chen, Y.S. Cheng, T.H. Jen, S.A. Chen, Solution processable self-doped polyaniline as hole transport layer for inverted polymer solar cells. J. Mater. Chem. 21(35), 13483–13489 (2011)Google Scholar
  36. 36.
    W. Zhao, L. Ye, S. Zhang, B. Fan, M. Sun, J. Hou, Ultrathin polyaniline-based buffer layer for highly efficient polymer solar cells with wide applicability. Sci. Rep. 4, 6570 (2014)Google Scholar
  37. 37.
    E. Kymakis, M.M. Stylianakis, G.D. Spyropoulos, E. Stratakis, E. Koudoumas, C. Fotakis, Spin coated carbon nanotubes as the hole transport layer in organic photovoltaics. Sol. Energy Mater. Sol. Cells 96, 298–301 (2012)Google Scholar
  38. 38.
    R. Sarvari, M. Akbari-Alanjaraghi, B. Massoumi, Y. Beygi-Khosrowshahi, S. Agbolaghi, Conductive and biodegradable scaffolds based on a five-arm and functionalized star-like polyaniline–polycaprolactone copolymer with ad-glucose core. New J. Chem. 41(14), 6371–6384 (2017)Google Scholar
  39. 39.
    B. Massoumi, R. Sarvari, S. Agbolaghi, Biodegradable and conductive hyperbranched terpolymers based on aliphatic polyester, poly (D, L-lactide), and polyaniline used as scaffold in tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 67(13), 808–821 (2018)Google Scholar
  40. 40.
    M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, X. Ma, J. Zhang, W. Tang, Nematic liquid crystal materials as a morphology regulator for ternary small molecule solar cells with power conversion efficiency exceeding 10%. J. Mater. Chem. A 5(7), 3589–3598 (2017)Google Scholar
  41. 41.
    M. Zhang, F. Zhang, Q. An, Q. Sun, W. Wang, J. Zhang, W. Tang, Highly efficient ternary polymer solar cells by optimizing photon harvesting and charge carrier transport. Nano Energy 22, 241–254 (2016)Google Scholar
  42. 42.
    Q. An, F. Zhang, Q. Sun, M. Zhang, J. Zhang, W. Tang, X. Yin, Z. Deng, Efficient organic ternary solar cells with the third component as energy acceptor. Nano Energy 26, 180–191 (2016)Google Scholar
  43. 43.
    Z. Hu, Z. Wang, Q. An, F. Zhang, Semitransparent polymer solar cells with 12.37% efficiency and 18.6% average visible transmittance. Sci. Bull. (2019). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran
  2. 2.Chemical Engineering Department, Faculty of EngineeringAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations