Electron–hole pair creation energy in amorphous selenium: geminate versus columnar recombination

  • M. Z. KabirEmail author
  • Salman M. Arnab
  • Nour Hijazi


Amorphous selenium (a-Se) is one of the most successful photoconductors for direct-conversion X-ray detectors. However, the initial carrier recombination is believed to be responsible for high electron–hole pair (EHP) creation energy in a-Se. The simultaneously generated electron and its hole twin can recombine (geminate recombination) or the non-geminate electrons and holes in the columnar track of the primary photoelectron can also recombine (columnar recombination). The question of which mechanism (geminate or columnar) dominates in X-ray irradiation has not been resolved. In this paper, we examine these two recombination mechanisms and analyze them by fitting with published experimental data. The analysis and results are consistent with the columnar recombination mechanism at X-ray irradiation. We also propose an empirical expression for the electric field and photon energy-dependent EHP creation energy in a-Se at room temperature.



The authors acknowledge the financial support from NSERC through its Discovery Grant program.


  1. 1.
    S.O. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Sensors 11, 5112 (2011)CrossRefGoogle Scholar
  2. 2.
    I. Saito, W. Miyazaki, M. Onishi, Y. Kudo, T. Masuzawa, T. Yamada, A. Koh, D. Chua, K. Soga, M. Overend, M. Aono, G.A.J. Amaratunga, K. Okano, Appl. Phys. Lett. 98, 152102 (2011)CrossRefGoogle Scholar
  3. 3.
    S.M. Arnab, M.Z. Kabir, I.E.E.E. Trans, Rad. Plasma Med. Sci. 1, 221–228 (2017)Google Scholar
  4. 4.
    S.A. Mahmood, M.Z. Kabir, O. Tousignant, J. Greenspan, IEEE Trans. Nucl. Sci. 59, 597 (2012)CrossRefGoogle Scholar
  5. 5.
    B. Zhao, W. Zhao, Med. Phys. 35, 1978 (2008)CrossRefGoogle Scholar
  6. 6.
    C.A. Klein, J. Appl. Phys. 39, 2029 (1968)CrossRefGoogle Scholar
  7. 7.
    W. Que, J.A. Rowlands, Phys. Rev. B 51, 10500 (1995)CrossRefGoogle Scholar
  8. 8.
    I.M. Blevis, D.C. Hunt, J.A. Rowlands, J. Appl. Phys. 85, 7958 (1999)CrossRefGoogle Scholar
  9. 9.
    C. Haugen, S.O. Kasap, J.A. Rowlands, J. Phys. D 32, 200 (1999)CrossRefGoogle Scholar
  10. 10.
    D. Mah, J.A. Rowlands, J.A. Rawlinson, Med. Phys. 25, 444 (1998)CrossRefGoogle Scholar
  11. 11.
    M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford University Press, New York, 1999)Google Scholar
  12. 12.
    L. Onsager, Phys. Rev. 54, 554 (1938)CrossRefGoogle Scholar
  13. 13.
    D.M. Pai, R.C. Enck, Phys. Rev. B 11(12), 5163 (1975)CrossRefGoogle Scholar
  14. 14.
    E. Fourkal, M. Lachaine, B.G. Fallone, Phys. Rev. B 63, 195204 (2001)CrossRefGoogle Scholar
  15. 15.
    O. Bubon, K. Jandieri, S.D. Baranovskii, S.O. Kasap, A. Reznik, J. Appl. Phys. 119, 124511 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Jaffe, Ann. Phys. Leipzig (series no 24) 42, 303 (1913)CrossRefGoogle Scholar
  17. 17.
    N. Hijazi, M.Z. Kabir, J. Mater. Sci.: Mater. Electron. 28, 7036 (2017)Google Scholar
  18. 18.
    N. Hijazi, D. Panneerselvam, M.Z. Kabir, J. Mater. Sci.: Mater. Electron. 29, 486 (2018)Google Scholar
  19. 19.
    C. Haugen, S.O. Kasap, Philos. Mag. 71, 91 (1995)CrossRefGoogle Scholar
  20. 20.
    M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford University Press, New York, 1999), p. 502Google Scholar
  21. 21.
    O. Bubon, G. DeCrescenzo, J.A. Rowlands, A. Reznik, J. Non-Cryst, Solids 358, 2431 (2012)Google Scholar
  22. 22.
    G. Juska, K. Arlauskas, Phys. Status Solidi A 59, 389 (1980)CrossRefGoogle Scholar
  23. 23.
    M.F. Stone, W. Zhao, B.V. Jacak, P. O’Conner, B. Yu, P. Rehak, Med. Phys. 29, 319 (2002)CrossRefGoogle Scholar
  24. 24.
    S.O. Kasap, J. Phys. D 33, 2853 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada

Personalised recommendations