Advertisement

Gadolinium-based olivine phosphate for upgradation of cathode material in lithium ion battery

  • Irslan Ullah
  • Abdul MajidEmail author
  • Muhammad Isa Khan
Article

Abstract

A structurally modified cathode material for Lithium ion battery is reported in this study. This study was based on first principle calculations to study the electronic, ionic, and diffusion properties of olivine phosphate family of cathode material. The attempt was made to modify the conventionally used cathode material LiFePO4 by substituting Rare earth Gd on Fe sites. The Gd-4f’s electrostatic interaction, exchange coupling, impact on lithium’s intercalation, and ability to modify the crystal structure upon doping in the crystalline environment of the host have been studied and discussed in detail. The calculations on electronic structure, charge transfer between atoms, Li intercalation voltage, electron localization function (ELF) analysis, steric interaction between Li ion and metal cation (Fe and Gd) in both LiFePO4 and LiGdPO4 were carried out using prescribed methods. This trend of intercalation is related to structural relaxation in the vicinity of Gd which expedites the Li ion mobility without compromising the structural stability of the material. The analysis of interatomic steric interactions and ELF analysis helped to visualize the interactions in the cathode material. The findings of this study revealed that LiGdPO4 could be a potential candidate for its use as cathode in lithium ion battery and relevant devices.

Notes

References

  1. 1.
    P.G. Bruce, Energy storage beyond the horizon: rechargeable lithium batteries. Solid State Ionics 179(21–26), 752–760 (2008)CrossRefGoogle Scholar
  2. 2.
    J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013)CrossRefGoogle Scholar
  3. 3.
    M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5(7), 7854–7863 (2012)CrossRefGoogle Scholar
  4. 4.
    C.A. Vincent, Lithium batteries: a 50-year perspective, 1959–2009. Solid State Ionics 134(1–2), 159–167 (2000)CrossRefGoogle Scholar
  5. 5.
    T. Nagaura, Lithium ion rechargeable battery. Prog. Batter. Solar Cells 9, 209 (1990)Google Scholar
  6. 6.
    H.J. Bang et al., Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells. J. Electrochem. Soc. 153(4), A731–A737 (2006)CrossRefGoogle Scholar
  7. 7.
    N. Yabuuchi, T. Ohzuku, Lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. in Meeting Abstracts. 2006. The Electrochemical SocietyGoogle Scholar
  8. 8.
    A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997)CrossRefGoogle Scholar
  9. 9.
    J. Li et al., A facile recycling and regeneration process for spent LiFePO4 batteries. J. Mater. Sci. 30(15), 14580–14588 (2019)Google Scholar
  10. 10.
    A. Jena, B. Nanda, Engineering diffusivity and operating voltage in lithium iron phosphate through transition-metal doping. Phys. Rev. Appl. 7(3), 034007 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Raj, A. Sil, PEDOT: pss coating on pristine and carbon coated LiFePO4 by one-step process: the study of electrochemical performance. J. Mater. Sci. 30(14), 13604–13616 (2019)Google Scholar
  12. 12.
    G. Li, H. Azuma, M. Tohda, LiMnPO4 as the cathode for lithium batteries. Electrochem. Solid State Lett. 5(6), A135–A137 (2002)CrossRefGoogle Scholar
  13. 13.
    M. Yonemura et al., Comparative kinetic study of olivine Li x MPO 4 (M = Fe, Mn). J. Electrochem. Soc. 151(9), A1352–A1356 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Wolfenstine, J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources 142(1–2), 389–390 (2005)CrossRefGoogle Scholar
  15. 15.
    W. Li et al., Effect of rare earth ions doping on properties of LiFePO4/C cathode material. J. Rare Earths 32(9), 895–899 (2014)CrossRefGoogle Scholar
  16. 16.
    P. Ghosh, S. Mahanty, R.N. Basu, Lanthanum-doped LiCoO2 cathode with high rate capability. Electrochim. Acta 54(5), 1654–1661 (2009)CrossRefGoogle Scholar
  17. 17.
    Y. Ding et al., Effect of rare earth elements doping on structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 for lithium-ion battery. Solid State Ionics 178(13–14), 967–971 (2007)CrossRefGoogle Scholar
  18. 18.
    Y. Zhang et al., Ce-doped LiNi1/3Co(1/3 − x/3)Mn1/3Cex/3O2 cathode materials for use in lithium ion batteries. Chin. Sci. Bull. 57(32), 4181–4187 (2012)CrossRefGoogle Scholar
  19. 19.
    A.M. Khedr, M.M. Abou-Sekkina, F.G. El-Metwaly, Synthesis, structure, and electrochemistry of Sm-modified LiMn2O4 cathode materials for lithium-ion batteries. J. Electron. Mater. 42(6), 1275–1281 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Helan, L.J. Berchmans, Synthesis of LiSm0.01Mn1.99O4 by molten salt technique. J. Rare Earths 28(2), 255–259 (2010)CrossRefGoogle Scholar
  21. 21.
    F. Ning et al., Structural, electronic, and Li migration properties of RE-doped (RE = Ce, La) LiCoO2 for Li-ion batteries: a first-principles investigation. J. Phys. Chem. C 120(33), 18428–18434 (2016)CrossRefGoogle Scholar
  22. 22.
    J.-K. Park, Principles and Applications of Lithium Secondary Batteries (Wiley, New Jersey, 2012)CrossRefGoogle Scholar
  23. 23.
    V.I. Anisimov, F. Aryasetiawan, A. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. 9(4), 767 (1997)Google Scholar
  24. 24.
    M. Cococcioni, S. De Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71(3), 035105 (2005)CrossRefGoogle Scholar
  25. 25.
    F. Zhou et al., The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 132(3), 181–186 (2004)CrossRefGoogle Scholar
  26. 26.
    W. Setyawan, S. Curtarolo, High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49(2), 299–312 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Hao, C. Wolverton, Lithium transport in amorphous Al2O3 and AlF3 for discovery of battery coatings. J. Phys. Chem. C 117(16), 8009–8013 (2013)CrossRefGoogle Scholar
  28. 28.
    P. Zhai et al., Fischer–Tropsch synthesis nanostructured catalysts: understanding structural characteristics and catalytic reaction. Nanotechnol. Rev. 2(5), 547–576 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Jena, B. Nanda, Unconventional magnetism and band gap formation in LiFePO4: consequence of polyanion induced non-planarity. Scientific reports 6, 19573 (2016)CrossRefGoogle Scholar
  30. 30.
    D. Wiedemann et al., Lithium diffusion pathways in 3R-Li x TiS2: a combined neutron diffraction and computational study. J. Phys. Chem. C 119(21), 11370–11381 (2015)CrossRefGoogle Scholar
  31. 31.
    A.H. Reshak, Copper-intercalated TiS2: electrode materials for rechargeable batteries as future power resources. J. Phys. Chem. A 113(8), 1635–1645 (2009)CrossRefGoogle Scholar
  32. 32.
    A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381(6582), 499 (1996)CrossRefGoogle Scholar
  33. 33.
    M.M. Kalantarian, S. Asgari, P. Mustarelli, A theoretical approach to evaluate the rate capability of Li-ion battery cathode materials. J. Mater. Chem. A 2(1), 107–115 (2014)CrossRefGoogle Scholar
  34. 34.
    Z. Liu, X. Huang, Structural, electronic and Li diffusion properties of LiFeSO4F. Solid State Ionics 181(25), 1209–1213 (2010)CrossRefGoogle Scholar
  35. 35.
    S. Laubach et al., Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys. Chem. Chem. Phys. 11(17), 3278–3289 (2009)CrossRefGoogle Scholar
  36. 36.
    M.S. Islam, R.A. Davies, J.D. Gale, Structural and electronic properties of the layered LiNi0.5Mn0.5O2 lithium battery material. Chem. Mater. 15(22), 4280–4286 (2003)CrossRefGoogle Scholar
  37. 37.
    V. Anisimov et al., First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. 9(35), 7359 (1997)Google Scholar
  38. 38.
    M. Aydinol et al., Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56(3), 1354 (1997)CrossRefGoogle Scholar
  39. 39.
    Y.S. Meng, M.E. Arroyo-de Dompablo, First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2(6), 589–609 (2009)CrossRefGoogle Scholar
  40. 40.
    J. Bréger et al., Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical study. Chem. Mater. 18(20), 4768–4781 (2006)CrossRefGoogle Scholar
  41. 41.
    C.C. Chang, J.Y. Kim, P.N. Kumta, Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide. J. Electrochem. Soc. 147(5), 1722–1729 (2000)CrossRefGoogle Scholar
  42. 42.
    C. Pouillerie et al., Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide. J. Power Sources 96(2), 293–302 (2001)CrossRefGoogle Scholar
  43. 43.
    B. Chowdari, G.S. Rao, S. Chow, Cathodic behavior of (Co, Ti, Mg)-doped LiNiO2. Solid State Ionics 140(1–2), 55–62 (2001)CrossRefGoogle Scholar
  44. 44.
    M.Y. Song, R. Lee, I. Kwon, Synthesis by sol–gel method and electrochemical properties of LiNi1 − yAlyO2 cathode materials for lithium secondary battery. Solid State Ionics 156(3–4), 319–328 (2003)CrossRefGoogle Scholar
  45. 45.
    S.-H. Kang et al., Layered Li (Ni0.5 − xMn0.5 − xM2x′) O2 (M′ = Co, Al, Ti; x = 0, 0.025) cathode materials for Li-ion rechargeable batteries. J. Power Sources 112(1), 41–48 (2002)CrossRefGoogle Scholar
  46. 46.
    H. Kondo et al., Effects of Mg-substitution in Li (Ni Co, Al) O2 positive electrode materials on the crystal structure and battery performance. J. Power Sources 174(2), 1131–1136 (2007)CrossRefGoogle Scholar
  47. 47.
    D. Morgan, A. Van der Ven, G. Ceder, Li conductivity in Li x MPO4 (M = Mn, Fe Co, Ni) olivine materials. Electrochem. Solid State Lett. 7(2), A30–A32 (2004)CrossRefGoogle Scholar
  48. 48.
    K. Tatsumi et al., Local atomic and electronic structures around Mg and Al dopants in LiNiO 2 electrodes studied by XANES and ELNES and first-principles calculations. Phys. Rev. B 78(4), 045108 (2008)CrossRefGoogle Scholar
  49. 49.
    F. Kong et al., Ab initio study of doping effects on LiMnO 2 and Li2MnO3 cathode materials for Li-ion batteries. J. Mater. Chem. A 3(16), 8489–8500 (2015)CrossRefGoogle Scholar
  50. 50.
    W.-J. Zhang, Structure and performance of LiFePO4 cathode materials: a review. J. Power Sources 196(6), 2962–2970 (2011)CrossRefGoogle Scholar
  51. 51.
    Y. Panayiotatos, R. Vovk, A. Chroneos, Gold and silver diffusion in germanium: a thermodynamic approach. J. Mater. Sci. 28(2), 1966–1970 (2017)Google Scholar
  52. 52.
    Y. Panayiotatos et al., Tin diffusion in germanium: a thermodynamic approach. J. Mater. Sci. 28(13), 9936–9940 (2017)Google Scholar
  53. 53.
    J. Jung, M. Cho, M. Zhou, Density functional theory study of the mechanism of Li diffusion in rutile RuO2. AIP Adv. 4(1), 017104 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GujratGujratPakistan

Personalised recommendations