Advertisement

Thermally stimulated depolarization current study of oxygen-vacancy-related relaxation in lead lanthanum zirconate stannate titanate antiferroelectric ceramics

  • Tianyuan Zhang
  • Zhangyuan Zhao
  • Zhongqian Liu
  • Xiaozhen Song
  • Wenchang Hui
  • Xuewei Liang
  • Yong ZhangEmail author
Article
  • 17 Downloads

Abstract

The oxygen-vacancy-related relaxation behavior in lead lanthanum zirconate stannate titanate antiferroelectric ceramics has been investigated by thermally stimulated depolarization current measurements. These investigations have revealed that two successive peaks with typical characteristics can be obtained in the antiferroelectric ceramics polarized under various polarization and depolarization conditions. The first peak is attributed to defect dipolar orientation. Its dipolar nature corresponding to defect associations composed of oxygen vacancies and lead vacancies may be responsible for the occurrence of the dielectric relaxation at lower temperature. In addition, the second peak is expected to be associated with the relaxation of space charge polarization. The migration of oxygen vacancies is the origin of high temperature relaxation response.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 51672157 and 51811530105) and the Ministry of Science and Technology of China through 973-Project (Grant No. 2015CB654604).

References

  1. 1.
    W.L. Ma, X.Z. Song, Y. Zhang, Q. Zhang, J. Zhu, D.L. Yang, Y.Z. Chen, I. Baturin, J. Mater. Sci.: Mater. Electron. 27, 1391 (2016)Google Scholar
  2. 2.
    P. Liu, M.Y. Li, Q.F. Zhang, W.R. Li, Y.J. Zhang, M. Shen, S.Y. Qiu, G.Z. Zhang, S.L. Jiang, J. Eur. Ceram. Soc. 38, 5396 (2018)CrossRefGoogle Scholar
  3. 3.
    F.P. Zhuo, Q. Li, J.H. Gao, Y.J. Wang, Q.F. Yan, Y.L. Zhang, X.C. Chu, J. Am. Ceram. Soc. 99, 2047 (2016)CrossRefGoogle Scholar
  4. 4.
    H.L. Zhang, X.F. Chen, F. Cao, G.S. Wang, X.L. Dong, Y. Gu, Y.S. Liu, Appl. Phys. Lett. 94, 252902 (2009)CrossRefGoogle Scholar
  5. 5.
    Q.F. Zhang, Y. Dan, J. Chen, Y.M. Lu, T.Q. Yang, X. Yao, Y.B. He, Ceram. Int. 43, 11428 (2017)CrossRefGoogle Scholar
  6. 6.
    R. Xu, J.J. Tian, Q.S. Zhu, T. Zhao, Y.J. Feng, X.Y. Wei, Z. Xu, Ceram. Int. 43, 13918 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Zhang, Z.X. Yue, L.T. Li, J. Am. Ceram. Soc. 101, 1974 (2018)CrossRefGoogle Scholar
  8. 8.
    Y.K. Yang, F.L. Liu, Y.W. Zhang, M.F. Li, F. Ling, H.T. Wu, Ceram. Int. 44, 12238 (2018)CrossRefGoogle Scholar
  9. 9.
    Z. Li, X.Z. Song, Y. Zhang, Y.Z. Chen, Z.Q. Shen, I. Baturin, J. Appl. Phys. 121, 204102 (2017)CrossRefGoogle Scholar
  10. 10.
    X.R. Zhang, G.C. Jiang, F.F. Guo, D.Q. Liu, S.T. Zhang, B. Yang, W.W. Cao, J. Am. Ceram. Soc. 101, 2996 (2018)CrossRefGoogle Scholar
  11. 11.
    S. Souilem, N. Doulache, M.W. Khemici, A. Gourari, Int. J. Polym. Anal. Charact. 19, 175 (2014)CrossRefGoogle Scholar
  12. 12.
    V.M. Gun’ko, V.I. Zarko, E.V. Goncharuk, L.S. Andriyko, V.V. Turov, Y.M. Nychiporuk, R. Leboda, J. Skubiszewska-Zieba, A.L. Gabchak, V.D. Osovskii, Y.G. Ptushinskii, G.R. Yurchenko, O.A. Mishchuk, P.P. Gorbik, P. Pissis, J.P. Blitz, Adv. Colloid Interface Sci. 131, 1 (2007)CrossRefGoogle Scholar
  13. 13.
    J. Jeong, Y.H. Han, J. Electroceram. 17, 1051 (2006)CrossRefGoogle Scholar
  14. 14.
    S.-H. Yoon, C.A. Randall, K.-H. Hur, J. Am. Ceram. Soc. 93, 1950 (2010)Google Scholar
  15. 15.
    S.-H. Yoon, J.-S. Park, S.-H. Kim, D.-Y. Kim, Appl. Phys. Lett. 103, 042901 (2013)CrossRefGoogle Scholar
  16. 16.
    H. Lee, J.R. Kim, M.J. Lanagan, S. Trolier-McKinstry, C.A. Randall, J. Am. Ceram. Soc. 96, 1209 (2013)CrossRefGoogle Scholar
  17. 17.
    X.Z. Song, Y. Zhang, Y.Z. Chen, Q. Zhang, J. Zhu, D.L. Yang, J. Electron. Mater. 44, 4819 (2015)CrossRefGoogle Scholar
  18. 18.
    W. Liu, C.A. Randall, J. Am. Ceram. Soc. 91, 3245 (2008)CrossRefGoogle Scholar
  19. 19.
    X.Z. Song, T.Y. Zhang, Y. Zhang, K.J. Hu, Z.Y. Zhao, I. Baturin, Ceram. Int. 44, 5668 (2018)CrossRefGoogle Scholar
  20. 20.
    X.H. Zhang, Y. Zhang, J. Zhang, B. Peng, Z.K. Xie, L.X. Yuan, Z.X. Yue, L.T. Li, J. Am. Ceram. Soc. 97, 3170 (2014)CrossRefGoogle Scholar
  21. 21.
    S.-H. Yoon, C.A. Randall, K.-H. Hur, J. Am. Ceram. Soc. 92, 1766 (2009)CrossRefGoogle Scholar
  22. 22.
    W. Liu, C.A. Randall, J. Am. Ceram. Soc. 91, 3251 (2008)CrossRefGoogle Scholar
  23. 23.
    J.X. Sheng, T. Fukami, J. Karasawa, J. Am. Ceram. Soc. 81, 260 (1998)CrossRefGoogle Scholar
  24. 24.
    B.S. Kang, S.K. Choi, C.H. Park, J. Appl. Phys. 94, 1904 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Fine Ceramics, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations