Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 20989–20996 | Cite as

Exploration of organic additives-assisted vanadium pentoxide (V2O5) nanoparticles for Cu/n-V2O5/p-Si Schottky diode applications

  • C. Arun Paul
  • B. Sharanya Shree
  • T. Preethi
  • J. Chandrasekaran
  • K. Mohanraj
  • K. SenthilEmail author
Article
  • 30 Downloads

Abstract

The organic additives-assisted vanadium pentoxide (OA:V2O5) nanoparticles (NPs) were prepared by a facile co-precipitation method and their structural, optical, and electrical properties have been analyzed. The orthorhombic crystal structure was observed in the X-ray diffraction pattern of pure vanadium pentoxide (V2O5) NPs. The XRD patterns of OA: V2O5 NPs reveals that the crystallite size of the V2O5 NPs reduced without any change in the crystal structure. The SEM images showed that organic additives strongly influence on the surface morphology of the V2O5 NPs. The TEM analysis revealed that the acid-treated V2O5 NPs are relatively smaller in size compared to without acid-treated V2O5 NPs. From the optical measurements, an increase in optical band gap was observed for OA:V2O5 NPs. The dc electrical analysis revealed that the increased dc electrical conductivity is due to the incorporation of various organic additives (OA) in the V2O5 NPs. The electrical parameters such as ideality factor (n), barrier height (ФB), series resistance (Rs), and interface properties have been analyzed for the Cu/n-V2O5/p-Si Schottky diodes (SBDs) by the J–V, Cheung’s and Norde method. The barrier height value is increased for Cu/OA:V2O5/p-Si SBDs.

Notes

References

  1. 1.
    J. Zhang, Y. Li, B. Zhang, H. Wang, Q. Xin, A. Song, Nat. Commun. 6, 7561 (2015)CrossRefGoogle Scholar
  2. 2.
    W.C. Chen, P.C. Hsu, C.W. Chien, K.M. Chang, C.J. Hsu, C.H. Chang, W.K. Lee, W.F. Chou, H.H. Hsieh, C.C. Wu, J. Phys. D 47, 365101 (2014)CrossRefGoogle Scholar
  3. 3.
    J.Y. Park, H. Lee, J.R. Renzas, Y. Zhang, G.A. Somorjai, Nano Lett. 8, 2388–2392 (2008)CrossRefGoogle Scholar
  4. 4.
    K.Y. Mitra, C. Sternkiker, C.M. Domingo, E. Sowade, E. Ramonm, J. Carrabina, H.L. Gomes, R.R. Baumann, Flex. Print. Electron. 2, 015003 (2017)CrossRefGoogle Scholar
  5. 5.
    F. Li, Z. Chen, Nanoscale 5, 5321–5333 (2013)CrossRefGoogle Scholar
  6. 6.
    K. Inzani, T. Grande, F. Vullum-Bruer, S.M. Selback, J. Phys. Chem. C 120(16), 8959–8968 (2016)CrossRefGoogle Scholar
  7. 7.
    V. Ranea, P.L.D. Quina, Mater. Res. Express. 3, 085005 (2016)CrossRefGoogle Scholar
  8. 8.
    C. Bhandari, W.R. Lambrecht, M.V. Schilfgaarde, Phys. Rev. B 91, 125116 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Wang, S. Dong, C. Yu, X. Han, J. Guo, J. Sun, Catal. Commun. 92, 100–104 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Liu, B. Su, Y. Tang, X. Jiang, A. Yu, Adv. Energy Mater. 7, 1700885 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Schoiswohl, S. Surnev, F.P. Netzer, G. Krasse, J. Phys. Condens. Mater. 18, R1 (2006)CrossRefGoogle Scholar
  12. 12.
    H. Liu, W. Zhu, D. Long, J. Zhu, G. Pezzotti, Appl. Surf. Sci. 478, 383–392 (2019)CrossRefGoogle Scholar
  13. 13.
    S. Wang, K.A. Owusu, L. Mai, Y. Ke, Y. Zhou, P. Hu, S. Magdassi, Y. Long, Appl. Energy 211, 200–217 (2018)CrossRefGoogle Scholar
  14. 14.
    Y. Li, Z. Huang, P.K. Kalambate, Y. Zhong, Z. Huang, M. Xie, Y. Shen, Y. Huang, Nano Energy 60, 752–759 (2019)CrossRefGoogle Scholar
  15. 15.
    E. Aawani, N. Memarian, H.D. Dizaji, J. Phys. Chem. Solids 125, 8–15 (2019)CrossRefGoogle Scholar
  16. 16.
    K. Abbas, D.J. Kang, AIP Adv. 8, 035125 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Alghool, H.F. AbdEl-Halim, A.M. Mostafa, J. Inorg. Organomet. Polym. 29, 1324 (2019)CrossRefGoogle Scholar
  18. 18.
    J.M. Velazquez, S. Banerjee, Small 5, 1025–1029 (2009)CrossRefGoogle Scholar
  19. 19.
    Q. Shi, J.W. Liu, R.Z. Hu, M.Q. Zeng, M.J. Dai, M. Zhu, RSC Adv. 2, 7273–7278 (2012)CrossRefGoogle Scholar
  20. 20.
    C.J. Cui, G.M. Wu, J. Shen, B. Zhou, Z.H. Zhang, H.Y. Yang, S.F. She, Electrochim. Acta 55, 2536–2541 (2010)CrossRefGoogle Scholar
  21. 21.
    M.L. Qin, Q. Liang, A.Q. Pan, S.Q. Liang, Q. Zhang, Y. Tang, X.P. Tan, J. Power Sources 268, 700–705 (2014)CrossRefGoogle Scholar
  22. 22.
    Y.L. Cheah, N. Gupta, S.S. Pramana, V. Aravindan, G. Wee, M. Srinivsan, J. Power Sources 196, 6465–6472 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Shafique, S. Yang, Y.T. Woldu, Y. Wang, Sens. Actuators A 288, 107–116 (2019)CrossRefGoogle Scholar
  24. 24.
    A.A. Mane, A.V. Moholkar, Appl. Surf. Sci. 416, 511–520 (2017)CrossRefGoogle Scholar
  25. 25.
    B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, A.C.S. Appl, Mater. Interfaces 4, 4484–4490 (2012)CrossRefGoogle Scholar
  26. 26.
    K.S. Prasad, C. Shivamallu, G. Shruthi, M. Prasad, Chem. Select 3, 3860–3865 (2018)Google Scholar
  27. 27.
    T. Kim, J. Shin, T.S. You, H. Lee, J. Kim, Electrochim. Acta 164, 227–234 (2015)CrossRefGoogle Scholar
  28. 28.
    A.T. Raj, K. Ramanujam, S. Thangavel, S. Gopalakrishnan, N. Raghavan, G. Venugopal, J. Nanosci. Nanotechnol. 15, 3802–3808 (2015)CrossRefGoogle Scholar
  29. 29.
    K. Mohanraj, D. Balasubramanian, J. Chandrasekaran, B. Babu, J. Mater. Sci. Mater. Electron. 28, 7749–7759 (2017)CrossRefGoogle Scholar
  30. 30.
    C.S. Garoufalis, A. Barnasas, A. Stamatelatos, V. Karoutsos, S. Grammatikopoulos, P. Poulopoulos, S. Baskoutas, Materials 11(6), 949 (2018)CrossRefGoogle Scholar
  31. 31.
    A.A.M. Farag, W.A. Farooq, F. Yakuphanoglu, Microelectron. Eng. 88, 2894–2899 (2011)CrossRefGoogle Scholar
  32. 32.
    K. Mohanraj, D. Balasubramanian, J. Chandrasekaran, A. Chandra Bose, Mater. Sci. Semicond. Proc. 79, 74–91 (2018)CrossRefGoogle Scholar
  33. 33.
    B. Tatar, D. Demiroglu, M. Urgen, Microelectron. Eng. 126, 184–190 (2014)CrossRefGoogle Scholar
  34. 34.
    R.H. AlOrainy, A.A. Hendi, Microelectron. Eng. 127, 14–20 (2014)CrossRefGoogle Scholar
  35. 35.
    S. Karatas, F. Yakuphanoglu, Mater. Chem. Phys. 138, 72–77 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Science and HumanitiesSri Krishna College of Engineering and TechnologyCoimbatoreIndia
  2. 2.Advanced Materials Research Laboratory, Department of PhysicsBannari Amman Institute of TechnologySathyamangalamIndia
  3. 3.Department of PhysicsSri Ramakrishna Mission Vidyalaya College of Arts and ScienceCoimbatoreIndia
  4. 4.Raman Research LaboratoryPG & Research Department of Physics, Government Arts CollegeThiruvannamalaiIndia

Personalised recommendations