Advertisement

Effect of the Eu3+ (x = 0, 1, 2 and 3 mol%) doped Zn2−xTiO4 and Zn2Ti1−xO4 obtained by complex polymerization method: photoluminescent and photocatalytic properties

  • G. G. Nascimento
  • N. F. Andrade NetoEmail author
  • L. M. P. Garcia
  • M. S. Li
  • E. Longo
  • C. A. Paskocimas
  • M. R. D. Bomio
  • F. V. Motta
Article
  • 34 Downloads

Abstract

In this work, Zn2EuxTi1−xO4 and Zn2−xEuxTiO4 (x = 0, 1, 2 and 3 mol%) powders were synthesized by complex polymerization method (CPM) and calcined at 1000 °C for 4 h. The powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis spectroscopy in the visible region and photoluminescence properties (PL). The photocatalytic properties were estimated by degradation of methylene blue (MB) dye when irradiated by UV lamps. X-ray diffraction results demonstrated the existence of Zn2TiO4 as primary phase and ZnO with secondary phase. According to diffractograms, the crystallite size varied between 49 and 67 nm. The Eu3+ ions introduction provides increased absorption in visible region, but the band-gap remains practically constant. In samples were observed an increased in photocatalysis with the increase in europium concentration, while in the Zn2EuxTi1−xO4 samples, photocatalysis was reduced to europium concentrations greater than 1%. Eu3+ doped Zn2TiO4 provided a photoluminescent intensity increasing. CIE chromaticity coordinates confirm emission in the red region of the phosphor.

Notes

Acknowledgements

This study was partially financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES/PROCAD)—Finance Code 2013/2998/2014 and the author’s thanks to the financial support of the Brazilian research financing institution: CNPq No. 307546/2014.

References

  1. 1.
    K.M. Girish, S.C. Prashantha, R. Naik, H. Nagabhushana, Opt. Mater. 73, 197–205 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Pramanik, K. Ravikumar, R. Kalsar, S. Suwas, B. Basu, Ceram. Int. 45, 12509–12515 (2019)CrossRefGoogle Scholar
  3. 3.
    J. Arin, S. Thongtem, A. Phuruangrat, T. Thongtem, Mater. Lett. 193, 270–273 (2017)CrossRefGoogle Scholar
  4. 4.
    A.H. Ramadan, L. Hesselmann, R.A. De Souza, J. Phys. Chem. Solids 86, 90–94 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Yan, H. Yang, X. Zhao, R. Li, X. Wang, Mater. Res. Bull. 105, 286–290 (2018)CrossRefGoogle Scholar
  6. 6.
    C.-Y. Hsiao, W. Jhih-Cheng, C.-F. Shih, Mater. Res. Bull. 48, 1316–1320 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Jiajia, W. Sun, F. Li, Y. Guan, X. Zhou, J. Li, L. Chen, J. Alloys Compd. 797, 1002–1006 (2019)CrossRefGoogle Scholar
  8. 8.
    L. Khatua, R. Panda, A.K. Nayak, A. Singh, P.K. Sahoo, D. Pradhan, U.P. Singh, S.K. Das, J. Alloys Compd. 764, 895–900 (2018)CrossRefGoogle Scholar
  9. 9.
    G. Akgül, J. Mol. Struct. 1037, 35–39 (2013)CrossRefGoogle Scholar
  10. 10.
    K.M. Girish, R. Naik, S.C. Prashantha, H. Nagabhushana, H.P. Nagaswarupa, K.S. Anantha Raju, H.B. Premkumar, S.C. Sharma, B.M. Nagabhushana, Fgghj. Spectrochimica Acta A 138, 857–865 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Takai, K.-I. Tabuchi, H. Okada, T. Esaka, J. Ceram. Soc. Jpn. 118, 895–898 (2010)CrossRefGoogle Scholar
  12. 12.
    B.L. Zhu, C.S. Xie, W.Y. Wang, K.J. Huang, J.H. Hu, Mater. Lett. 58, 624–629 (2004)CrossRefGoogle Scholar
  13. 13.
    H. Su, S. Wu, Mater. Lett. 59, 2337–2341 (2005)CrossRefGoogle Scholar
  14. 14.
    F.H. Dulln, D.E. Rase, J. Am. Ceram. Soc. 43, 125–131 (1960)CrossRefGoogle Scholar
  15. 15.
    J. Mrázek, L. Spanhel, G. Chadeyron, V. Matějec, J. Phys. Chem. C 114, 2843–2852 (2010)CrossRefGoogle Scholar
  16. 16.
    D. Poleti, D. Vasović, L.J. Karanović, Z. Branković, J. Solid State Chem. 112, 39–44 (1994)CrossRefGoogle Scholar
  17. 17.
    H. Zhang, X. Fu, S. Niu, G. Sun, Q. Xin, Synthesis and characterization of ZrO2: Eu nanopowder by EDTA complexing sol–gel method (Elsevier, Lausanne, 2005)Google Scholar
  18. 18.
    R. Gunawidjaja, T. Myint, H. Eilers, Chem. Phys. Lett. 515, 122–126 (2011)CrossRefGoogle Scholar
  19. 19.
    K.M. Girish, S.C. Prashantha, H. Nagabhushana, J. Sci.: Adv. Mater. Devices 2, 360–370 (2017)Google Scholar
  20. 20.
    L. Lutterotti, S. Matthies, H.R. Wenk, IUCr: Newsl. CPD 21, 14–15 (1999)Google Scholar
  21. 21.
    M. Faisal, A. Ismail, A. Ibrahim, H. Bouzid, S.A. Al-Sayari, Chem. Eng. J. 229, 225–233 (2013)CrossRefGoogle Scholar
  22. 22.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  23. 23.
    M. Patel, A. Chavda, Indrajit Mukhopadhyay (Nanostructured SnS with Inherent Anisotropic Optical Properties for High Photoactivity, Joondong Kim and Abhijit Ray, 2015)Google Scholar
  24. 24.
    B.D. Viezbicke, S. Patel, B.J. Davis, D.P. Birnie III, Phys. Status Solidi (b) 252, 1700–1710 (2015)CrossRefGoogle Scholar
  25. 25.
    A.C. Chaves, S.J.G. Lima, R.C.M.U. Araújo, A.M. Maria, A. Maurera, E. Longo, P.S. Pizani, L.G.P. Simões, L.E.B. Soledade, A.G. Souza, I.M.G. dos Santos, J. Solid State Chem. 179, 985–992 (2006)CrossRefGoogle Scholar
  26. 26.
    J.H. Swisher, J. Yang, R.P. Gupta, Ind. Eng. Chem. Res. 34, 4463–4471 (1995)CrossRefGoogle Scholar
  27. 27.
    K.M. Girish, R. Naik, S.C. Prashantha, H. Nagabhushana, H.P. Nagaswarupa, K.S. Anantha Raju, H.B. Premkumar, S.C. Sharma, B.M. Nagabhushana, Spectrochim. Acta A 138, 857–865 (2015)CrossRefGoogle Scholar
  28. 28.
    P. Zhang, C. Shao, M. Zhang, Z. Guo, M. Jingbo, Z. Zhang, X. Zhang, P. Liang, Y. Liu, J. Hazard. Mater. 229–230, 265–272 (2012)CrossRefGoogle Scholar
  29. 29.
    B.V. Bhise, M.B. Dongare, S.A. Patil, S.R. Sawant, J. Mater. Sci. Lett. 10, 922–924 (1991)CrossRefGoogle Scholar
  30. 30.
    A.L. Barros, T.M. Pizzolato, E. Carissimi, I.A.H. Schneider, Miner. Eng. 19, 87–90 (2006)CrossRefGoogle Scholar
  31. 31.
    B.S. Barros, P.S. Melo, L. Gama, S. Alves-Jr, E. Fagury-Neto, R.H.G.A. Kiminami, A.C.F.M. Costa, Cerâmica 51, 63–69 (2005)CrossRefGoogle Scholar
  32. 32.
    B.S. Barros, P.S. Melo, L. Gama, S. Alves-Jr, E. Fagury-Neto, R.H. Kiminami, A.C. Costa, Cerâmica. 51(317), 63–69 (2005)CrossRefGoogle Scholar
  33. 33.
    A.E. Morales, E.S. Mora, U. Pal, Rev. Mex. Fis. 53(5), 18–22 (2007)Google Scholar
  34. 34.
    J. Lee, A.J. Easteal, Curr. Appl. Phys. 9(4), 792–796 (2009)CrossRefGoogle Scholar
  35. 35.
    M. Chandrasekhar, H. Nagabhushana, Y.S. Vidya, K.S. Anantharaju, S.C. Sharma, H.B. Premkumar, S.C. Prashantha, B.D. Prasad, C. Shivakumara, R. Saraf, H.P. Nagaswarupa, J. Mol. Catal. A 409, 26–41 (2015)CrossRefGoogle Scholar
  36. 36.
    L.S. Wang, M.W. Xiao, X. Huang, W. Yan Dan, J. Hazard. Mater. 161(1), 49–54 (2008)CrossRefGoogle Scholar
  37. 37.
    U. Bali, E. Çatalkaya, F. Şengül, J. Hazard. Mater. 114, 159–166 (2004)CrossRefGoogle Scholar
  38. 38.
    W.G. Kuo, Water Res. 26, 881–886 (1992)CrossRefGoogle Scholar
  39. 39.
    S.S. Kurbanov, T.W. Kang, J. Lumin. 158, 99–102 (2015)CrossRefGoogle Scholar
  40. 40.
    C. Louis, R. Bazzi, M.A. Flores, W. Zheng, K. Lebbou, O. Tillement, B. Mercier, C. Dujardin, P. Perriat, J. Solid State Chem. 173, 335–341 (2003)CrossRefGoogle Scholar
  41. 41.
    B. Santiago-González, C. Vázquez-Vázquez, M.C. Blanco-Varela, J.M. Gaspar Martinho, J.M. Ramallo-López, F.G. Requejo, M.A. López-Quintela, J. Colloid Interface Sci. 455, 154–162 (2015)CrossRefGoogle Scholar
  42. 42.
    V. Longo, L.S. Cavalcante, Maria G.S. Costa, M. Moreira, A. de Figueiredo, J. Andres, J. Varela, E. Longo, Theor. Chem. Acc. 124, 385–394 (2009)CrossRefGoogle Scholar
  43. 43.
    C. Li, Y. Bando, M. Nakamura, N. Kimizuka, H. Kito, Mater. Res. Bull. 35(3), 351–358 (2000)CrossRefGoogle Scholar
  44. 44.
    K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurišić, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, L. Ding, W.K. Ge, J. Phys. Chem. B 110, 20865–20871 (2006)CrossRefGoogle Scholar
  45. 45.
    Y.-S. Chang, Y.-H. Chang, I.-G. Chen, G.-J. Chen, Y.-L. Chai, W. Sean, T.-H. Fang, J. Alloys Compd. 354, 303–309 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LSQM – Laboratory of Chemical Synthesis of Materials – Department of Materials EngineeringFederal University of Rio Grande do Norte – UFRNNatalBrazil
  2. 2.Chemistry Institute – CDMF, Federal University of São CarlosSão CarlosBrazil

Personalised recommendations