ZnO thick films for NO2 detection: effect of different nanostructures on the sensors’ performances
- 48 Downloads
Abstract
In this paper, the great sensitivity and selectivity to NO2 detection at low temperature down to ppb level of zinc oxide (ZnO) thick-film sensors are reported. Sensor performances of ZnO films prepared by screen-printing technique were evaluated comparing two different ZnO nano-powders in wurtzite crystal structure. Powders were synthesized by hydrothermal route (HT-ZnO) and by auto-combustion sol–gel synthesis (AC-ZnO). After proper characterization of the nano-powders, the thick-film sensors were fabricated by screen-printing technique onto α-alumina substrates equipped with Pt interdigitated electrodes, followed by a thermal treatment. The sensor response was studied in the range 50–250 °C. Best results were reached at 150 °C, with sensor response R (Zg/Z0)—defined as the ratio between impedance under NO2 (Zg) and impedance under dry air (Z0)—equal to 42.92 for HT-ZnO and to 23.18 for AC-ZnO under 0.5 ppm of NO2 in dry conditions. Finally, response and recovery time were measured, and selectivity of the sensors was determined by exposing the film toward O3, CO2, CH4, N2O and humidity at the best working temperature. Both sensors showed great sensitivity for NO2 detection, supporting the exploitation of these sensors as NO2 detectors at ppb level.
Abbreviations
- AC-ZnO
Zinc oxide synthesized by auto-combustion sol–gel route
- HT-ZnO
Zinc oxide synthesized by hydrothermal route
Notes
References
- 1.EPA Technical Bulletin, Nitrogen Oxides (NO x), Why and How They Are Controlled? https://www3.epa.gov/ttncatc1/dir1/fnoxdoc.pdf. Accessed 5 Oct 2019
- 2.World Health Organization, Nitrogen Dioxide, Global Update (World Health Organization, Regional Office for Europe, Copenhagen, 2005)Google Scholar
- 3.European Environment Agency, Air Quality in Europe—2012 Report, EEA Report No. 4/2012 (European Environment Agency, 2012)Google Scholar
- 4.N.N. Hansel, P.N. Breysse, M.C. McCormack, E.C. Matsui, J. Curtin-Brosnan, D.L. Williams, J.L. Moore, J.L. Cuhran, G.B. Diette, Environ. Health Perspect. 116, 1428 (2008)Google Scholar
- 5.Air Pollution in Europe 1990–2004, EU Air Quality Directive 2001/81/CEGoogle Scholar
- 6.G. Korotcenkov, V. Brinzari, B.K. Cho, J. Sens. 2016, 3816094 (2016)Google Scholar
- 7.Y. Ushio, M. Miyayama, H. Yanagida, Sens. Actuators B17, 221 (1994)Google Scholar
- 8.E. Wiberg, N. Wiberg, A.F. Holleman, Inorganic Chemistry, 1st edn (Academic, San Diego; De Gruyter, Berlin, 2001), p. 1884Google Scholar
- 9.Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)Google Scholar
- 10.M. De Liedekerke, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2006)Google Scholar
- 11.P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, Sens. Actuators B 165, 133 (2012)Google Scholar
- 12.Z.L. Wang, ACS Nano 2, 1987 (2008)Google Scholar
- 13.J. Zheng, Z.-Y. Jiang, Q. Kuang, Z.-X. Xie, R.-B. Huang, L.-S. Zheng, J. Solid State Chem. 182, 115 (2009)Google Scholar
- 14.S. Kundu, U. Nithiyanantham, Ind. Eng. Chem. Res. 53, 13667 (2014)Google Scholar
- 15.R. Sankar Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, J. Alloys Compd. 721, 182 (2017)Google Scholar
- 16.M. Das, D. Sarkar, Ceram. Int. 43, 11123 (2017)Google Scholar
- 17.P. Patil, G. Gaikwad, D.R. Patil, J. Naik, Bull. Mater. Sci. 39, 655 (2016)Google Scholar
- 18.L. Zhu, W. Zeng, Mater. Lett. 209, 244 (2017)Google Scholar
- 19.L. Zhu, Y. Li, W. Zeng, Appl. Surf. Sci. 427, 281 (2018)Google Scholar
- 20.X. Liu, J. Sun, X. Zhang, Sens. Actuators B 211, 220 (2015)Google Scholar
- 21.Z.S. Hosseini, A. Irajizad, A. Mortezaali, Sens. Actuators B 207, 865 (2015)Google Scholar
- 22.L. Zhu, W. Zeng, Sens. Actuators A 267, 242 (2017)Google Scholar
- 23.T. Tesfamichael, C. Cetin, C. Piloto, M. Arita, J. Bell, Appl. Surf. Sci. 357, 728 (2015)Google Scholar
- 24.R.K. Sonker, S.R. Sabhajeet, S. Singh, B.C. Yadav, Mater. Lett. 152, 189 (2015)Google Scholar
- 25.L. Yu, F. Guo, S. Liu, B. Yang, Y. Jiang, L. Qi, X. Fan, J. Alloys Compd. 682, 352 (2016)Google Scholar
- 26.J. Wang, X. Li, Y. Xia, S. Komarneni, H. Chen, J. Xu, L. Xiang, D. Xie, ACS Appl. Mater. Interfaces 8, 8600 (2016)Google Scholar
- 27.A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Chem. Rev. 116, 14493 (2016)Google Scholar
- 28.W. Wen, J.-M. Wu, RSC Adv. 4, 58090 (2014)Google Scholar
- 29.J.A. Conkling, C.J. Mocella, Chemistry of Pyrotechnics: Basic Principles and Theory (CRC Press Taylor and Francis Group, Boca Raton, 2011), pp. 7–57Google Scholar
- 30.D. Pugliese, F. Bella, V. Cauda, A. Lamberti, A. Sacco, E. Tresso, S. Bianco, ACS Appl. Mater. Interfaces 5, 11288 (2013)Google Scholar
- 31.D. Ziegler, A. Marchisio, L. Montanaro, P. Palmero, J.-M. Tulliani, Solid State Ion. 320, 24 (2018)Google Scholar
- 32.A. Khorsand Zak, W.H. Abd Majid, M.R. Mahmoudian, M. Darroudi, R. Yousefi, Adv. Powder Technol. 24, 618 (2013)Google Scholar
- 33.X. Zhang, W. Jiang, D. Song, H. Sun, Z. Sun, F. Li, J. Alloys Compd. 475, L34 (2009)Google Scholar
- 34.Y. Tong, S. Zhao, X. Wang, L. Lu, J. Alloys Compd. 479, 746 (2009)Google Scholar
- 35.K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 73, 51 (2002)Google Scholar
- 36.C.M. Damaskinos, M.A. Vasiliades, V.N. Stathopoulos, A.M. Efstathiou, Catalysts 9, 621 (2019)Google Scholar
- 37.V. Cauda, D. Pugliese, N. Garino, A. Sacco, S. Bianco, F. Bella, A. Lamberti, C. Gerbaldi, Energy 65, 639 (2014)Google Scholar
- 38.G. Korotcenkov, V. Brinzari, B.K. Cho, Crit. Rev. Solid State Mater. Sci. 43, 83 (2017)Google Scholar
- 39.A.D. McNaught, A. Wilkinson, IUPAC. Compendium of Chemical Terminology (Gold Book Blackwell Scientific Publications, Oxford, 1997)Google Scholar
- 40.S. Öztürk, N. Kilinç, Z.Z. Öztürk, J. Alloys Compd. 581, 196 (2013)Google Scholar
- 41.V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Sens. Actuators B 239, 1185 (2017)Google Scholar
- 42.M. Hassan, A.S. Afify, M. Ataalla, D. Milanese, J.-M. Tulliani, Sensors 17, 2538 (2017)Google Scholar
- 43.N. Barsan, U. Weimar, J. Electroceram. 7, 143 (2001)Google Scholar
- 44.X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, Z.L. Wang, Nanotechnology 24, 225501 (2013)Google Scholar
- 45.P. Wang, Y. Fu, B. Yu, Y. Zhao, L. Xing, X. Xue, J. Mater. Chem. A 3, 3529 (2015)Google Scholar
- 46.O. Berger, T. Hoffmann, W.-J. Fischer, V. Melev, Proceedings of SPIE 5116, Smart Sensors, Actuators, and MEMS, 24 April 2003Google Scholar
- 47.A. Chiorino, G. Ghiotti, F. Prinetto, M.C. Carotta, D. Gnani, G. Martinelli, Sens. Actuators B 58, 338 (1999)Google Scholar
- 48.N. Yamazoe, K. Shimanoe, J. Electrochem. Soc. 155, J93 (2008)Google Scholar
- 49.K.J. Choi, H.W. Jang, Sensors 10, 4083 (2010)Google Scholar
- 50.X. Wang, W. Liu, J. Liu, F. Wang, J. Kong, S. Qiu, C. He, L. Luan, A.C.S. Appl, Mater. Interfaces 4, 817 (2012)Google Scholar
- 51.J. Chang, M.Z. Ahmad, W. Wlodarski, E.R. Waclawik, Sensors 13, 8445 (2013)Google Scholar
- 52.G. Korotcenkov, V. Macsanov, V. Tolstoy, V. Brinzari, J. Schwank, G. Faglia, Sens. Actuators B 96, 602 (2003)Google Scholar