Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 20958–20969 | Cite as

ZnO thick films for NO2 detection: effect of different nanostructures on the sensors’ performances

  • Daniele Ziegler
  • Andrea Marchisio
  • Paola Palmero
  • Diego Pugliese
  • Valentina Cauda
  • Jean-Marc TullianiEmail author


In this paper, the great sensitivity and selectivity to NO2 detection at low temperature down to ppb level of zinc oxide (ZnO) thick-film sensors are reported. Sensor performances of ZnO films prepared by screen-printing technique were evaluated comparing two different ZnO nano-powders in wurtzite crystal structure. Powders were synthesized by hydrothermal route (HT-ZnO) and by auto-combustion sol–gel synthesis (AC-ZnO). After proper characterization of the nano-powders, the thick-film sensors were fabricated by screen-printing technique onto α-alumina substrates equipped with Pt interdigitated electrodes, followed by a thermal treatment. The sensor response was studied in the range 50–250 °C. Best results were reached at 150 °C, with sensor response R (Zg/Z0)—defined as the ratio between impedance under NO2 (Zg) and impedance under dry air (Z0)—equal to 42.92 for HT-ZnO and to 23.18 for AC-ZnO under 0.5 ppm of NO2 in dry conditions. Finally, response and recovery time were measured, and selectivity of the sensors was determined by exposing the film toward O3, CO2, CH4, N2O and humidity at the best working temperature. Both sensors showed great sensitivity for NO2 detection, supporting the exploitation of these sensors as NO2 detectors at ppb level.



Zinc oxide synthesized by auto-combustion sol–gel route


Zinc oxide synthesized by hydrothermal route



  1. 1.
    EPA Technical Bulletin, Nitrogen Oxides (NO x), Why and How They Are Controlled? Accessed 5 Oct 2019
  2. 2.
    World Health Organization, Nitrogen Dioxide, Global Update (World Health Organization, Regional Office for Europe, Copenhagen, 2005)Google Scholar
  3. 3.
    European Environment Agency, Air Quality in Europe—2012 Report, EEA Report No. 4/2012 (European Environment Agency, 2012)Google Scholar
  4. 4.
    N.N. Hansel, P.N. Breysse, M.C. McCormack, E.C. Matsui, J. Curtin-Brosnan, D.L. Williams, J.L. Moore, J.L. Cuhran, G.B. Diette, Environ. Health Perspect. 116, 1428 (2008)Google Scholar
  5. 5.
    Air Pollution in Europe 1990–2004, EU Air Quality Directive 2001/81/CEGoogle Scholar
  6. 6.
    G. Korotcenkov, V. Brinzari, B.K. Cho, J. Sens. 2016, 3816094 (2016)Google Scholar
  7. 7.
    Y. Ushio, M. Miyayama, H. Yanagida, Sens. Actuators B17, 221 (1994)Google Scholar
  8. 8.
    E. Wiberg, N. Wiberg, A.F. Holleman, Inorganic Chemistry, 1st edn (Academic, San Diego; De Gruyter, Berlin, 2001), p. 1884Google Scholar
  9. 9.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)Google Scholar
  10. 10.
    M. De Liedekerke, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2006)Google Scholar
  11. 11.
    P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, Sens. Actuators B 165, 133 (2012)Google Scholar
  12. 12.
    Z.L. Wang, ACS Nano 2, 1987 (2008)Google Scholar
  13. 13.
    J. Zheng, Z.-Y. Jiang, Q. Kuang, Z.-X. Xie, R.-B. Huang, L.-S. Zheng, J. Solid State Chem. 182, 115 (2009)Google Scholar
  14. 14.
    S. Kundu, U. Nithiyanantham, Ind. Eng. Chem. Res. 53, 13667 (2014)Google Scholar
  15. 15.
    R. Sankar Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, J. Alloys Compd. 721, 182 (2017)Google Scholar
  16. 16.
    M. Das, D. Sarkar, Ceram. Int. 43, 11123 (2017)Google Scholar
  17. 17.
    P. Patil, G. Gaikwad, D.R. Patil, J. Naik, Bull. Mater. Sci. 39, 655 (2016)Google Scholar
  18. 18.
    L. Zhu, W. Zeng, Mater. Lett. 209, 244 (2017)Google Scholar
  19. 19.
    L. Zhu, Y. Li, W. Zeng, Appl. Surf. Sci. 427, 281 (2018)Google Scholar
  20. 20.
    X. Liu, J. Sun, X. Zhang, Sens. Actuators B 211, 220 (2015)Google Scholar
  21. 21.
    Z.S. Hosseini, A. Irajizad, A. Mortezaali, Sens. Actuators B 207, 865 (2015)Google Scholar
  22. 22.
    L. Zhu, W. Zeng, Sens. Actuators A 267, 242 (2017)Google Scholar
  23. 23.
    T. Tesfamichael, C. Cetin, C. Piloto, M. Arita, J. Bell, Appl. Surf. Sci. 357, 728 (2015)Google Scholar
  24. 24.
    R.K. Sonker, S.R. Sabhajeet, S. Singh, B.C. Yadav, Mater. Lett. 152, 189 (2015)Google Scholar
  25. 25.
    L. Yu, F. Guo, S. Liu, B. Yang, Y. Jiang, L. Qi, X. Fan, J. Alloys Compd. 682, 352 (2016)Google Scholar
  26. 26.
    J. Wang, X. Li, Y. Xia, S. Komarneni, H. Chen, J. Xu, L. Xiang, D. Xie, ACS Appl. Mater. Interfaces 8, 8600 (2016)Google Scholar
  27. 27.
    A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Chem. Rev. 116, 14493 (2016)Google Scholar
  28. 28.
    W. Wen, J.-M. Wu, RSC Adv. 4, 58090 (2014)Google Scholar
  29. 29.
    J.A. Conkling, C.J. Mocella, Chemistry of Pyrotechnics: Basic Principles and Theory (CRC Press Taylor and Francis Group, Boca Raton, 2011), pp. 7–57Google Scholar
  30. 30.
    D. Pugliese, F. Bella, V. Cauda, A. Lamberti, A. Sacco, E. Tresso, S. Bianco, ACS Appl. Mater. Interfaces 5, 11288 (2013)Google Scholar
  31. 31.
    D. Ziegler, A. Marchisio, L. Montanaro, P. Palmero, J.-M. Tulliani, Solid State Ion. 320, 24 (2018)Google Scholar
  32. 32.
    A. Khorsand Zak, W.H. Abd Majid, M.R. Mahmoudian, M. Darroudi, R. Yousefi, Adv. Powder Technol. 24, 618 (2013)Google Scholar
  33. 33.
    X. Zhang, W. Jiang, D. Song, H. Sun, Z. Sun, F. Li, J. Alloys Compd. 475, L34 (2009)Google Scholar
  34. 34.
    Y. Tong, S. Zhao, X. Wang, L. Lu, J. Alloys Compd. 479, 746 (2009)Google Scholar
  35. 35.
    K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 73, 51 (2002)Google Scholar
  36. 36.
    C.M. Damaskinos, M.A. Vasiliades, V.N. Stathopoulos, A.M. Efstathiou, Catalysts 9, 621 (2019)Google Scholar
  37. 37.
    V. Cauda, D. Pugliese, N. Garino, A. Sacco, S. Bianco, F. Bella, A. Lamberti, C. Gerbaldi, Energy 65, 639 (2014)Google Scholar
  38. 38.
    G. Korotcenkov, V. Brinzari, B.K. Cho, Crit. Rev. Solid State Mater. Sci. 43, 83 (2017)Google Scholar
  39. 39.
    A.D. McNaught, A. Wilkinson, IUPAC. Compendium of Chemical Terminology (Gold Book Blackwell Scientific Publications, Oxford, 1997)Google Scholar
  40. 40.
    S. Öztürk, N. Kilinç, Z.Z. Öztürk, J. Alloys Compd. 581, 196 (2013)Google Scholar
  41. 41.
    V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Sens. Actuators B 239, 1185 (2017)Google Scholar
  42. 42.
    M. Hassan, A.S. Afify, M. Ataalla, D. Milanese, J.-M. Tulliani, Sensors 17, 2538 (2017)Google Scholar
  43. 43.
    N. Barsan, U. Weimar, J. Electroceram. 7, 143 (2001)Google Scholar
  44. 44.
    X. Xue, Y. Nie, B. He, L. Xing, Y. Zhang, Z.L. Wang, Nanotechnology 24, 225501 (2013)Google Scholar
  45. 45.
    P. Wang, Y. Fu, B. Yu, Y. Zhao, L. Xing, X. Xue, J. Mater. Chem. A 3, 3529 (2015)Google Scholar
  46. 46.
    O. Berger, T. Hoffmann, W.-J. Fischer, V. Melev, Proceedings of SPIE 5116, Smart Sensors, Actuators, and MEMS, 24 April 2003Google Scholar
  47. 47.
    A. Chiorino, G. Ghiotti, F. Prinetto, M.C. Carotta, D. Gnani, G. Martinelli, Sens. Actuators B 58, 338 (1999)Google Scholar
  48. 48.
    N. Yamazoe, K. Shimanoe, J. Electrochem. Soc. 155, J93 (2008)Google Scholar
  49. 49.
    K.J. Choi, H.W. Jang, Sensors 10, 4083 (2010)Google Scholar
  50. 50.
    X. Wang, W. Liu, J. Liu, F. Wang, J. Kong, S. Qiu, C. He, L. Luan, A.C.S. Appl, Mater. Interfaces 4, 817 (2012)Google Scholar
  51. 51.
    J. Chang, M.Z. Ahmad, W. Wlodarski, E.R. Waclawik, Sensors 13, 8445 (2013)Google Scholar
  52. 52.
    G. Korotcenkov, V. Macsanov, V. Tolstoy, V. Brinzari, J. Schwank, G. Faglia, Sens. Actuators B 96, 602 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
  2. 2.INSTM R.U. PoliTO-LINCE LaboratoryTurinItaly

Personalised recommendations