Anodic TiO2 nanotube supercapacitors enhanced by a facile in situ doping method

  • Cheng Zhang
  • Shuang Tian
  • Chuanmeng Xu
  • Liyi Li
  • Jian ZhouEmail author
  • Feng XueEmail author


In this work, the capacitive properties of anodic TiO2 nanotubes were enhanced by a facile in situ doping method. The tuning of TiO2 anodization was realized by adding Fe(NO3)3 into the aqueous HF solution as the dopant. The morphology, structure, chemical composition and capacitive properties of the as-prepared TiO2 nanotubes were characterized by various methods. It is found that N, F, and Fe elements can be doped into TiO2 nanotubes during the anodization process. The effect of doping concentration on the capacitive properties of TiO2 nanotubes was also investigated. With the optimum doping concentration of ~ 0.02 M, the doped TiO2 nanotubes exhibited a capacitance of 1.11 mF cm−2 at the scan rate of 100 mV s−1, much higher than that of the undoped TiO2 nanotubes. The X-ray photoelectron spectroscopy (XPS) results indicated the presence of N, F, and Fe in the TiO2 lattice and absorbed F on the TiO2 surface, both of which are believed to be the cause for the capacitance enhancement of the doped TiO2 nanotubes.



The authors thank Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (ASMA201602), Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology No. 56XCA17006-1 for financial support.


  1. 1.
    M. Acerce, D. Voiry, M. Chhowalla, Nat. Nano 10, 313 (2015)CrossRefGoogle Scholar
  2. 2.
    C. Zhou, Y. Zhang, Y. Li, J. Liu, Nano Lett. 13, 2078 (2013)CrossRefGoogle Scholar
  3. 3.
    R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Nano Energy 11, 211 (2015)CrossRefGoogle Scholar
  4. 4.
    C. Qu, Z. Liang, Y. Jiao, B. Zhao, B. Zhu, D. Dang, S. Dai, Y. Chen, R. Zou, M. Liu, Small 14(3), 1800285 (2018)CrossRefGoogle Scholar
  5. 5.
    V.C. Anitha, A.N. Banerjee, G.R. Dillip, S.W. Joo, B.K. Min, J. Phys. Chem. C 120, 9569 (2016)CrossRefGoogle Scholar
  6. 6.
    X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690 (2012)CrossRefGoogle Scholar
  7. 7.
    H. Zhou, Y. Zhang, J. Phys. Chem. C 118, 5626 (2014)CrossRefGoogle Scholar
  8. 8.
    C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Nano Lett. 6, 2690 (2006)CrossRefGoogle Scholar
  9. 9.
    Y. Yang, D. Kim, P. Schmuki, Chem. Asian J. 6, 2916 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Yang, D. Kim, M. Yang, P. Schmuki, Chem. Commun. 47, 7746 (2011)CrossRefGoogle Scholar
  11. 11.
    X. Ning, X. Wang, X. Yu, J. Li, J. Zhao, J. Alloys Compd. 658, 177 (2016)CrossRefGoogle Scholar
  12. 12.
    S.A. Al-Thabaiti, R. Hahn, N. Liu, R. Kirchgeorg, S. So, P. Schmuki, S.N. Basahel, S.M. Bawaked, Chem. Commun. 50, 7960 (2014)CrossRefGoogle Scholar
  13. 13.
    C. Zhang, L. Li, C.-C. Tuan, J. Zhou, F. Xue, C.-P. Wong, J. Mater. Sci. 29, 15130 (2018)Google Scholar
  14. 14.
    R.P. Vitiello, J.M. Macak, A. Ghicov, H. Tsuchiya, L.F.P. Dick, P. Schmuki, Electrochem. Commun. 8, 544 (2006)CrossRefGoogle Scholar
  15. 15.
    C. Kim, S. Kim, J. Lee, J. Kim, J. Yoon, ACS Appl. Mater. Interfaces. 7, 7486 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, Electrochim. Acta 116, 129 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Qin, J. Zhang, Y. Wang, X. Shu, C. Yu, J. Cui, H. Zheng, Y. Zhang, Y. Wu, RSC Adv. 6, 47669 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Yu, Z. Wu, C. Gong, W. Xiao, L. Sun, C. Lin, Nanomaterials 6, 107 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Deng, S. Wang, D. Liu, B. Zhu, W. Huang, S. Wu, S. Zhang, Catal. Lett. 129, 513 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Xing, Y. Wu, J. Zhang, F. Chen, Nanoscale 2, 1233 (2010)CrossRefGoogle Scholar
  21. 21.
    L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, Sol. Energy Mater. Sol. Cells 93, 1875 (2009)CrossRefGoogle Scholar
  22. 22.
    Z. Hua, Z. Dai, X. Bai, Z. Ye, H. Gu, X. Huang, J. Hazard. Mater. 293, 112 (2015)CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, F. Lv, T. Wu, L. Yu, R. Zhang, B. Shen, X. Meng, Z. Ye, P.K. Chu, J. Sol-Gel. Sci. Technol. 59, 387 (2011)CrossRefGoogle Scholar
  24. 24.
    D. Dolat, S. Mozia, B. Ohtani, A.W. Morawski, Chem. Eng. J. 225, 358 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Salari, S.H. Aboutalebi, K. Konstantinov, H.K. Liu, Phys. Chem. Chem. Phys. 13, 5038 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Salari, K. Konstantinov, H.K. Liu, J. Mater. Chem. 21, 5128 (2011)CrossRefGoogle Scholar
  27. 27.
    M.-S. Wu, Z.-S. Guo, J.-J. Jow, J. Phys. Chem. C 114, 21861 (2010)CrossRefGoogle Scholar
  28. 28.
    L. Li, B. Song, L. Maurer, Z. Lin, G. Lian, C.-C. Tuan, K.-S. Moon, C.-P. Wong, Nano Energy 21, 276 (2016)CrossRefGoogle Scholar
  29. 29.
    E. McCafferty, J.P. Wightman, Surf. Interface Anal. 26, 549 (1998)CrossRefGoogle Scholar
  30. 30.
    B. Siemensmeyer, J.W. Schultze, Surf. Interface Anal. 16, 309 (1990)CrossRefGoogle Scholar
  31. 31.
    D. Choi, G.E. Blomgren, P.N. Kumta, Adv. Mater. 18, 1178 (2006)CrossRefGoogle Scholar
  32. 32.
    F. Dong, H. Wang, Z. Wu, J. Qiu, J. Colloid Interface Sci. 343, 200 (2010)CrossRefGoogle Scholar
  33. 33.
    Y. Wu, M. Xing, B. Tian, J. Zhang, F. Chen, Chem. Eng. J. 162, 710 (2010)CrossRefGoogle Scholar
  34. 34.
    Y. Cong, J. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 111, 6976 (2007)CrossRefGoogle Scholar
  35. 35.
    Y. Xie, Y. Li, X. Zhao, J. Mol. Catal. Chem. 277, 119 (2007)CrossRefGoogle Scholar
  36. 36.
    D. Li, H. Haneda, S. Hishita, N. Ohashi, Chem. Mater. 17, 2588 (2005)CrossRefGoogle Scholar
  37. 37.
    D. Li, H. Haneda, S. Hishita, N. Ohashi, N.K. Labhsetwar, J. Fluor. Chem. 126, 69 (2005)CrossRefGoogle Scholar
  38. 38.
    C.-H. Chan, P. Samikkannu, H.-W. Wang, Int. J. Hydrog. Energy 41, 17818 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Advanced Metallic MaterialsSoutheast UniversityNanjingChina
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Industry and Information Technology Key Laboratory of Materials Processing and Protection Technology for Harsh Environment (Nanjing University of Aeronautics and Astronautics)Ministry of Industry and Information TechnologyBeijingChina

Personalised recommendations