Deposit on different back contacts: to high-quality CuInGaS2 thin films for photovoltaic application

  • Amal BouichEmail author
  • Shafi Ullah
  • Hanif Ullah
  • Bernabé Mari
  • Bouchaib Hartiti
  • Mohamed Ebn Touhami
  • D. M. F. Santos


Cu(In,Ga)Se2 (CIGS) absorber layer for photovoltaic application was successfully deposited by different substrate, indium tin oxide (ITO), fluorine-doped tin oxide (FTO) and molybdenum (Mo) after optimization of the operating parameters of the deposited films. The structural, morphological, optical and electrical properties of the CIGS films were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The inter-planar distance between the planes is estimated at 0.36 nm. Atomic force microscopy (AFM) samples deposited on Mo had the highest level of 751 nm for roughness compared to other samples. High absorbance and low transmittance are observed for films prepared with a shot interval energy of about 1.6 eV. Optical constants such as the refractive index (n), the extinction coefficient (k), the real part (εr) and the imaginary part (εi) of the dielectric constant were extracted from the data of absorbance/transmittance. The optoelectronic properties of this CuInGaS2 material make it advisable to use it for the manufacture of more efficient solar panels.



This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R).


  1. 1.
    T. Dull Weber, O. Lundberg, J. Malmström, M. Bodyguard, L. Stoltz, U. Rau, J.H. Werner, Back surface band gap gradings in Cu (In, Ga)Se2 solar cells. Thin Solid Films 387(1–2), 11–13 (2001)CrossRefGoogle Scholar
  2. 2.
    R.N. Bhattacharya, A.M. Fernandez, CuIn1−xGaxSe2-based photovoltaic cells from electrodeposited precursor films. Solar Energy Mater. Solar Cells 76(3), 331–337 (2003)CrossRefGoogle Scholar
  3. 3.
    G.S. Chen, J.C. Yang, Y.C. Chan, L.C. Yang, W. Huang, Another route to fabricate single-phase chalcogenides by post-salinization of Cu–In–Ga precursors sputter deposited from a single ternary target. Solar Energy Mater. Solar Cells 93(8), 1351–1355 (2009)CrossRefGoogle Scholar
  4. 4.
    C.C. Chen, X. Qi, M.G. Tsai, Y.F. Wu, I.G. Chen, C.Y. Lin, K.P. Chang, Low-temperature growth of Na doped CIGS films on flexible polymer substrates by pulsed laser ablation from a Na containing target. Surf. Coat. Technol. 231, 209–213 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Ajili, M. Castagné, N.K. Turki, Characteristics of CuIn1−xGaxS2 thin films synthesized by chemical spray pyrolysis. J. Lumin. 150, 1–7 (2014)CrossRefGoogle Scholar
  6. 6.
    U.C. Matur, S. Akyol, N. Baydoğan, H. Cimenoglu, The optical properties of CIGS thin films derived by sol-gel dip coating process at different withdrawal speed. Procedia-Soc. Behav. Sci. 195, 1762–1767 (2015)CrossRefGoogle Scholar
  7. 7.
    D. Lincot, J.F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, N. Bodereau, Chalcopyrite thin film solar cells by electrodeposition. Sol. Energy 77(6), 725–737 (2004)CrossRefGoogle Scholar
  8. 8.
    M. Harati, J. Jia, K. Giffard, K. Pellarin, C. Hewson, D.A. Love, Z. Ding, One-pot electrodeposition, characterization and photoactivity of stoichiometric copper indium gallium diselenide (CIGS) thin films for solar cells. Phys. Chem. Chem. Phys. 12(46), 15282–15290 (2010)CrossRefGoogle Scholar
  9. 9.
    K. Bouabid, A. Ihlal, A. Manar, A. Outzourhit, E.L. Ameziane, Effect of deposition and annealing parameters on the properties of electrodeposited CuIn1− xGaxSe2 thin films. Thin Solid Films 488(1–2), 62–67 (2005)CrossRefGoogle Scholar
  10. 10.
    H. Lee, C. Ji, Y. Kim, J.H. Lee, Y.H. Hwang, I. Jo, H. Kim, Electrochemical behavior of CIGS electrodeposition for applications to photovoltaic cells. J. Korean Phys. Soc. 64(8), 1138–1143 (2014)CrossRefGoogle Scholar
  11. 11.
    A.M. Fernandez, R.N. Bhattacharya, Electrodeposition of CuIn1−xGaxSe2 precursor films: optimization of film composition and morphology. Thin Solid Films 474(1–2), 10–13 (2005)Google Scholar
  12. 12.
    F. Long, W. Wang, J. Du, Z. Zou, CIS (CIGS) thin films prepared for solar cells by one-step electrodeposition in alcohol solution. J. Phys. 152(1), 012074 (2009)Google Scholar
  13. 13.
    A. Duchatelet, T. Sidali, N. Loones, G. Savidand, E. Chassaing, D. Lincot, 124% Efficient Cu (In, Ga)Se2 solar cell prepared from one step electrodeposited Cu–In–Ga oxide precursor layer. Sol. Energy Mater. Sol. Cells 119, 241–245 (2013)CrossRefGoogle Scholar
  14. 14.
    V.B. Chu, J.W. Cho, S.J. Park, Y.J. Hwang, H.K. Park, Y.R. Do, B.K. Min, Fabrication of solution processed 3D nanostructured CuInGaS2 thin film solar cells. Nanotechnology 25(12), 125401 (2014)CrossRefGoogle Scholar
  15. 15.
    P.U. Londhe, A.B. Rohom, R. Fernandes, D.C. Kothari, N.B. Chaure, Development of superstrate CuInGaSe2 thin film solar cells with low-cost electrochemical route from nonaqueous bath. ACS Sustain. Chem. Eng. 6(4), 4987–4995 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Lian, S. Ji, L. Zhao, J. Zhang, P. Yang, J. Zhang, M. An, One-step electrodeposition of CuInxGa1− xSe2 thin films from a mixture system of ionic liquid and ethanol. New J. Chem. 39(10), 7742–7745 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Inguanta, P. Livreri, S. Piazza, C. Sunseri, Fabrication and photoelectrochemical behavior of ordered CIGS nanowire arrays for application in solar cells. Electrochem. Solid-State Lett. 13(3), K22–K25 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Mandati, B.V. Sarada, S.R. Dey, S.V. Joshi, Pulsed electrochemical deposition of CuInSe2 and Cu (In, Ga) Se2 semiconductor thin films. Semicond.-Growth Charact. 6, 109–132 (2018)Google Scholar
  19. 19.
    A.M. Hermann, C. Gonzalez, P.A. Ramakrishnan, D. Balzar, N. Popa, P. Rice, M.E. Calixto, Fundamental studies on large area Cu (In, Ga)Se2 films for high efficiency solar cells. Solar Energy Mater. Solar Cells 70(3), 345–361 (2001)CrossRefGoogle Scholar
  20. 20.
    S.L. Patel, S. Chander, A. Purohit, M.D. Kannan, M.S. Dhaka, Influence of NH4Cl treatment on physical properties of CdTe thin films for absorber layer applications. J. Phys. Chem. Solids 123, 216–222 (2018)CrossRefGoogle Scholar
  21. 21.
    K. Orgassa, H.W. Schock, J.H. Werner, Alternative back contact materials for thin film Cu (In, Ga)Se2 solar cells. Thin Solid Films 431, 387–391 (2003)CrossRefGoogle Scholar
  22. 22.
    S. Chander, A. Purohit, C. Lal, M.S. Dhaka, Enhancement of optical and structural properties of vacuum evaporated CdTe thin films. Mater. Chem. Phys. 185, 202–209 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Chandramohan, S. Velumani, T. Venkatachalam, Experimental and theoretical investigations of structural and optical properties of CIGS thin films. Mater. Sci. Eng. B 174(1–3), 205–208 (2010)CrossRefGoogle Scholar
  24. 24.
    U.C. Matur, S. Akyol, N. Baydoğan, H. Cimenoglu, The optical properties of CIGS thin films derived by sol-gel dip coating process at different withdrawal speed. Procedia-Soc. Behav. Sci. 195, 1762–1767 (2015)CrossRefGoogle Scholar
  25. 25.
    P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)CrossRefGoogle Scholar
  26. 26.
    B. Amal, B. Hartiti, S. Ullah, H. Ullah, M.E. Touhami, D.M.F. Santos, B. Mari, Optoelectronic characterization of CuInGa (S) 2 thin films grown by spray pyrolysis for photovoltaic application. Appl Phys A 125(8), 579 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Amal Bouich
    • 1
    • 2
    • 3
    • 4
    Email author
  • Shafi Ullah
    • 1
  • Hanif Ullah
    • 1
  • Bernabé Mari
    • 1
  • Bouchaib Hartiti
    • 3
  • Mohamed Ebn Touhami
    • 2
  • D. M. F. Santos
    • 4
  1. 1.Institut de Disseny i FabricacióUniversitat PolitècnicaValènciaSpain
  2. 2.Laboratoiry LMEEFaculté des Sciences de KenitraKenitraMorocco
  3. 3.MAC &PM Laboratory, ANEPMAER Group FSTMMohamediaMorocco
  4. 4.CeFEMA, IST-U LisboaLisbonPortugal

Personalised recommendations