Advertisement

Effects of Pr doping on crystalline orientation, microstructure, dielectric, and ferroelectric properties of Pb1.2−1.5xPrxZr0.52Ti0.48O3 thin films prepared by sol–gel method

  • Da Chen
  • Xing Wang
  • Renkai Zhang
  • Fei Ding
  • Fengwei Wang
  • Biao Li
  • Helin ZouEmail author
Article
  • 4 Downloads

Abstract

Pb1.2−1.5xPrxZr0.52Ti0.48O3 (PPZT, x = 0%, 1%, 2%, 3%, 4%, 5%) thin films were prepared by sol–gel method on Pt(111)/Ti/SiO2/Si(100) substrates to investigate the effects of Pr doping on the crystalline structure, microstructure, dielectric properties, ferroelectric properties, and fatigue properties of PPZT thin films. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses showed that all the samples have completely perovskite structure with (100) preferred orientation. The maximum dielectric constant and remnant polarization were obtained in 2% Pr-doped film. The results of fatigue test revealed that the fatigue properties of PPZT films doped with Pr concentrations of 1% and 2% were significantly improved.

Notes

Funding

Funding was supported by National Natural Science Foundation of China (Grant No. 51775088).

References

  1. 1.
    K. Byung-Hun, L. Hwa-Sun, K. Sung-Wook, K. Piljoong, P. Yoon-Sok, Hydrodynamic responses of a piezoelectric driven MEMS inkjet print-head. Sens. Actuators A 210, 131–140 (2014)CrossRefGoogle Scholar
  2. 2.
    Y.B. Jeon et al., MEMS power generator with transverse mode thin film PZT. Sens. Actuators A 122(1), 16–22 (2005)CrossRefGoogle Scholar
  3. 3.
    T. Fujii, Y. Hishinuma, T. Mita, T. Naono, Characterization of Nb-doped Pb(Zr, Ti)O3 films deposited on stainless steel and silicon substrates by RF-magnetron sputtering for MEMS applications. Sens. Actuators A 163(1), 220–225 (2010)CrossRefGoogle Scholar
  4. 4.
    M.D. Nguyen, C.T.Q. Nguyen, H.N. Vu et al., Experimental evidence of breakdown strength and its effect on energy-storage performance in normal and relaxor ferroelectric films. Curr. Appl. Phys. 19(9), 1040–1045 (2019)CrossRefGoogle Scholar
  5. 5.
    J. He, J. Zhang, S. Qian et al., Flexible heterogeneous integration of PZT film by controlled spalling technology. J. Alloys Compd. 807, 151696 (2019)CrossRefGoogle Scholar
  6. 6.
    B. Akkopru‐Akgun, W. Zhu, M.T. Lanagan et al., The effect of imprint on remanent piezoelectric properties and ferroelectric aging of PbZr0.52Ti0.48O3 thin films. J. Am. Ceram. Soc. (2019).  https://doi.org/10.1111/jace.16367 CrossRefGoogle Scholar
  7. 7.
    Q. Zhang, R.W. Whatmore, Sol–gel PZT and Mn-doped PZT thin films for pyroelectric applications. J. Phys. D 34(15), 2296 (2001)CrossRefGoogle Scholar
  8. 8.
    R. Sano et al., Fabrication of multilayer Pb(Zr, Ti)O3 thin film by sputtering deposition for MEMS actuator applications. Jpn. J. Appl. Phys. 54(10S), 10ND03 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Shrabanee, R.N.P. Choudhary, P. Pramanik, Structural and electrical properties of Ca2+ -modified PZT electroceramics. Phys. B 387(1-2), 56–62 (2007)CrossRefGoogle Scholar
  10. 10.
    A.S. Sigov, K.A. Vorotilov, O.M. Zhigalina, Effect of lead content on microstructure of sol–gel PZT structures. Ferroelectrics 433(1), 146–157 (2012)CrossRefGoogle Scholar
  11. 11.
    C.S. Park et al., Effect of excess PbO on microstructure and orientation of PZT (60/40) films. J. Electroceram. 25(1), 20–25 (2010)CrossRefGoogle Scholar
  12. 12.
    H. Zhao et al., Effects of oxygen vacancy on the electronic structure and multiferroics in sol–gel derived Pb0.8Co0.2TiO3 thin films. Dalton Trans. 42(28), 10358–10364 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Takada et al., Effect of excess Pb on ferroelectric characteristics of conductive Al-doped ZnO and Sn-doped In2O3 top electrodes in PbLaZrTiOx capacitors. Int. J. Mater. Res. 106(1), 83–87 (2015)CrossRefGoogle Scholar
  14. 14.
    C. Zhu et al., Investigation the effects of the excess Pb content and annealing conditions on the microstructure and ferroelectric properties of PZT (52-48) films prepared by sol–gel method. Appl. Surf. Sci. 253(3), 1500–1505 (2006)CrossRefGoogle Scholar
  15. 15.
    Y. Park, K.W. Jeong, J.T. Song, Effect of excess Pb on fatigue properties of PZT thin films prepared by rf-magnetron sputtering. Mater. Lett. 56(4), 481–485 (2002)CrossRefGoogle Scholar
  16. 16.
    E. Boucher et al., Effects of Zr/Ti ratio on structural, dielectric and piezoelectric properties of Mn-and (Mn, F)-doped lead zirconate titanate ceramics. Ceram. Int. 32(5), 479–485 (2006)CrossRefGoogle Scholar
  17. 17.
    L.M. Sanchez et al., Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators. J. Mater. Res. 28(14), 1920–1931 (2013)CrossRefGoogle Scholar
  18. 18.
    L.M. Sanchez et al., in Improving PZT thin film texture through Pt metallization and seed layers. MRS Online Proceedings Library Archive, vol. 1299 (2011)Google Scholar
  19. 19.
    C.T. Shelton et al., Chemically homogeneous complex oxide thin films via improved substrate metallization. Adv. Funct. Mater. 22(11), 2295–2302 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Prabu et al., Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol–gel method. J. Alloys Compd. 551, 200–207 (2013)CrossRefGoogle Scholar
  21. 21.
    G.H. Khorrami, A.K. Zak, A. Kompany, Optical and structural properties of X-doped (X = Mn, Mg, and Zn) PZT nanoparticles by Kramers-Kronig and size strain plot methods. Ceram. Int. 38(7), 5683–5690 (2012)CrossRefGoogle Scholar
  22. 22.
    S.R. Shannigrahi, R.N.P. Choudhary, H.N. Acharya, Effects of Pr doping on structural and dielectric properties of sol–gel prepared PZT (60/40) ceramics. J. Mater. Sci. Lett. 18(5), 345–348 (1999)CrossRefGoogle Scholar
  23. 23.
    S.Y. Chen, I.W. Chen, Texture development, microstructure evolution, and crystallization of chemically derived PZT thin films. J. Am. Ceram. Soc. 81(1), 97–105 (1998)CrossRefGoogle Scholar
  24. 24.
    G. Holzlechner et al., Oxygen vacancy redistribution in PbZrxTi1−xO3 (PZT) under the influence of an electric field. Solid State Ionics 262, 625–629 (2014)CrossRefGoogle Scholar
  25. 25.
    J.F. Scott, M. Dawber, Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. Appl. Phys. Lett. 76(25), 3801–3803 (2000)CrossRefGoogle Scholar
  26. 26.
    A. Chaipanich, Dielectric and piezoelectric properties of PZT–cement composites. Curr. Appl. Phys. 7(5), 537–539 (2007)CrossRefGoogle Scholar
  27. 27.
    N. Bar-Chaim et al., Electric field dependence of the dielectric constant of PZT ferroelectric ceramics. J. Appl. Phys. 45(6), 2398–2405 (1974)CrossRefGoogle Scholar
  28. 28.
    W. Gong, J.F. Li, X.C. Chu, Z.L. Gui, L.T. Li, Preparation and characterization of sol-gel derived (100)-textured Pb(Zr, Ti)O3 thin films: PbO seeding role in the formation of preferential orientation. Acta Mater. 52, 2787–2793 (2004)CrossRefGoogle Scholar
  29. 29.
    N.K. James et al., Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT–ionomer composites. Smart Mater. Struct. 23(5), 055001 (2014)CrossRefGoogle Scholar
  30. 30.
    Mitsuhiro Okayasu, Go Ozeki, Mamoru Mizuno, Fatigue failure characteristics of lead zirconate titanate piezoelectric ceramics. J. Eur. Ceram. Soc. 30(3), 713–725 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Da Chen
    • 1
  • Xing Wang
    • 1
  • Renkai Zhang
    • 1
  • Fei Ding
    • 1
  • Fengwei Wang
    • 1
  • Biao Li
    • 1
  • Helin Zou
    • 1
    Email author
  1. 1.Key Laboratory for Micro/Nano Technology and Systems of Liaoning ProvinceDalian University of TechnologyDalianChina

Personalised recommendations