Advertisement

Study of structural and electrical properties along with magnetic properties of Ni0.5−xMgxCu0.2Cd0.3Fe2O4 nanoferrites synthesized by employing sol–gel auto-combustion method

  • M. Moazzam HossenEmail author
  • M. Belal Hossen
Article
  • 22 Downloads

Abstract

The mixed ferrite sample Ni0.5−xMgxCu0.2Cd0.3Fe2O4 (0.0 ≤ x ≤ 0.5, in the steps 0.1) has been synthesized employing sol–gel auto-combustion process. From XRD diffractograms, it has been observed the simple cubic spinel structure of the ferrite samples. With the substitution of Mg ion, both the experimental and theoretical lattice constant increased. For x = 0.0, the value of experimental lattice constant has been found 8.459 Å, which increases to a value 8.490 Å for x = 0.5. The surface morphology has been studied by FESEM images. Besides, the chemical composition and the elemental distribution of the sample have been revealed by EDS study. From the vibration band, the formation of spinel ferrite has been confirmed from the FT-IR spectra. It is seen that the samples exhibit ferrimagnetic behavior at room temperature, which has been shown by the magnetic measurement done by VSM. Dielectric constant, dielectric loss tangent, ac conductivity, and impedance Spectroscopy have been analyzed within the range 20 Hz–15 MHz. In the lower frequency region, a typical dielectric dispersion based on Maxwell–Wagner type interfacial polarization has been observed. Dielectric loss tangent exhibits an analogous sort of behavior as that of dielectric constant. The grain and grain boundary effect on electric properties have been studied from the complex impedance analysis. It has been seen that both the grain resistance and grain boundary resistance increase with the substitution of Mg2+ content. A rise in ac conductivity has been observed with the increase in frequency.

Notes

Acknowledgements

We are thankful for the continual support of Chittagong University of Engineering and Technology (CUET), Chittagong 4349, Bangladesh.

References

  1. 1.
    P.K. Chakrabarti, B.K. Nath, S. Brahma, S. Das, K. Goswami, U. Kumar, P. Mukhopadhyay, D. Das, M. Ammar, F. Mazaleyrat, J. Phys.: Condens. Matter 18, 5253–5267 (2006).  https://doi.org/10.1088/0953-8984/18/22/023 CrossRefGoogle Scholar
  2. 2.
    M.A. Rehman, M.A. Malik, M. Akram, K. Khan, A. Maqsood, Phys. Scr. 83, 015602 (2011).  https://doi.org/10.1088/0031-8949/83/01/015602 CrossRefGoogle Scholar
  3. 3.
    H. Su, X. Tang, H. Zhang, L. Jia, Z. Zhong, J. Magn. Magn. Mater. 322(13), 1779–1783 (2010).  https://doi.org/10.1016/j.jmmm.2009.12.029 CrossRefGoogle Scholar
  4. 4.
    K.M. Akther Hossain, T.S. Biswas, T. Yanagida, H. Tanaka, H. Tabata, T. Kawai, Mater. Chem. Phys. 120(2–3), 461–467 (2010).  https://doi.org/10.1016/j.matchemphys.2009.11.040 CrossRefGoogle Scholar
  5. 5.
    Q. Xiwei, J. Zhou, Y. Zhenxing, G. Zhilun, L. Longtu, J. Magn. Magn. Mater. 251(3), 316–322 (2002).  https://doi.org/10.1016/S0304-8853(02)00854-5 CrossRefGoogle Scholar
  6. 6.
    M.A. Gabal, J. Magn. Magn. Mater. 321(19), 3144–3148 (2009).  https://doi.org/10.1016/j.jmmm.2009.05.047 CrossRefGoogle Scholar
  7. 7.
    A.H. Lu, E.L. Salabas, F. Schüth, Angew. Chem. Ger. Ed. 46, 1222–1244 (2007).  https://doi.org/10.1002/anie.200602866 CrossRefGoogle Scholar
  8. 8.
    S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, M. Rahimi-Nasrabadi, J. Mater. Sci. Mater. Electron. (2019).  https://doi.org/10.1007/s10854-019-01005-9 CrossRefGoogle Scholar
  9. 9.
    H. Moradmard, S.F. Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, J. Alloys Compd. 650, 116–122 (2015).  https://doi.org/10.1016/j.jallcom.2015.07.269 CrossRefGoogle Scholar
  10. 10.
    R.M. Rosnan, Z. Othaman, R. Hussin, A.A. Ati, A. Samavati, S. Dabagh, S. Zare, Chin. Phys. B 25(4), 047501–047507 (2016).  https://doi.org/10.1088/1674-1056/25/4/047501 CrossRefGoogle Scholar
  11. 11.
    P. Chavan, L.R. Naik, P.B. Belavi, G. Chavan, C.K. Ramesha, R.K. Kotnala, J. Electron. Mater. (2016).  https://doi.org/10.1007/s11664-016-4886-6 CrossRefGoogle Scholar
  12. 12.
    B. Thangjam, I. Soibam, Int. J. Appl. Eng. Res. 12(23), 13201–13206 (2017)Google Scholar
  13. 13.
    S.M. Kabbur, U.R. Ghodake, R.C. Kambale, S.D. Sartale, L.P. Chikhale, S.S. Suryavanshi, J. Electron. Mater. 46(10), 5693–5704 (2017).  https://doi.org/10.1007/s11664-017-5616-4 CrossRefGoogle Scholar
  14. 14.
    J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959), p. 136Google Scholar
  15. 15.
    S. Mirzaee, S.F. Shayesteh, S. Mahdavifar, Polymer 55(16), 3713–3719 (2014).  https://doi.org/10.1016/j.polymer.2014.06.039 CrossRefGoogle Scholar
  16. 16.
    A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, J. Magn. Magn. Mater. 358–359, 87–92 (2014).  https://doi.org/10.1016/j.jmmm.2014.01.039 CrossRefGoogle Scholar
  17. 17.
    K. Raju, G. Venkataiah, D.H. Yoon, Ceram. Int. 40(7A), 9337–9344 (2014).  https://doi.org/10.1016/j.ceramint.2014.01.157 CrossRefGoogle Scholar
  18. 18.
    N. Rezlescu, E. Rezlescu, C. Pasnicu, M. Craus, J. Phys, Condens. Mater. 6, 5707–5716 (1994).  https://doi.org/10.1088/0953-8984/6/29/013 CrossRefGoogle Scholar
  19. 19.
    A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43(6), 3161 (1991).  https://doi.org/10.1103/PhysRevA.43.3161 CrossRefGoogle Scholar
  20. 20.
    P. Roy, J. Bera, J. Magn. Magn. Mater. 298, 38–42 (2006).  https://doi.org/10.1016/j.jmmm.2005.03.007 CrossRefGoogle Scholar
  21. 21.
    B.D. Cullity, The Elements of X-ray Diffraction (Addison-Wesley Pub. Co. Inc, London, 1956), p. 42Google Scholar
  22. 22.
    N.M. Deraz, A. Alarifi, J. Anal. Appl. Pyrolysis 94, 41–47 (2012).  https://doi.org/10.1016/j.jaap.2011.10.004 CrossRefGoogle Scholar
  23. 23.
    S. Zare, A.A. Ati, S. Dabagh, R.M. Rosnan, Z. Othaman, J. Mol. Struct. 1089, 25–31 (2015).  https://doi.org/10.1016/j.molstruc.2015.02.006 CrossRefGoogle Scholar
  24. 24.
    Y. Wada, S. Nishimatsu, Grain growth mechanism of heavily phosphorous implanted polycrystalline silicon. J. Electron. Soc. 125, 1499 (1978).  https://doi.org/10.1016/j.jmmm.2016.08.035 CrossRefGoogle Scholar
  25. 25.
    M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M. Asghar, M.A. Khan, Curr. Appl. Phys. 14, 716 (2014).  https://doi.org/10.1016/j.cap.2014.02.021 CrossRefGoogle Scholar
  26. 26.
    W.B. White, W.A. De Angelis, Spectrochim. Acta Part A 23(4), 985 (1967).  https://doi.org/10.1016/0584-8539(67)80023-0 CrossRefGoogle Scholar
  27. 27.
    C.G. Ramankutty, S. Sugunan, Appl. Catal. A: Gen. 218(1–2), 39–51 (2001).  https://doi.org/10.1016/S0926-860X(01)00610-X CrossRefGoogle Scholar
  28. 28.
    R.D. Waldron, Phys. Rev. 99(6), 1727 (1955).  https://doi.org/10.1103/PhysRev.99.1727 CrossRefGoogle Scholar
  29. 29.
    M. Kaur, S. Rana, P.S. Tarsikka, Ceram. Int. 38(5), 4319–4323 (2012).  https://doi.org/10.1016/j.ceramint.2012.02.013 CrossRefGoogle Scholar
  30. 30.
    Y. Cheng, Y. Zhao, Y. Zhang, X. Cao, J. Colloid Interface Sci. 344(2), 321 (2010).  https://doi.org/10.1016/j.jcis.2009.12.044 CrossRefGoogle Scholar
  31. 31.
    P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Mater. Chem. Phys. 116(1), 207–213 (2009).  https://doi.org/10.1016/j.matchemphys.2009.03.011 CrossRefGoogle Scholar
  32. 32.
    O.M. Hemeda, M.Z. Said, M.M. Barakat, J. Magn. Magn. Mater. 224(2), 132 (2001).  https://doi.org/10.1016/S0304-8853(00)00578-3 CrossRefGoogle Scholar
  33. 33.
    U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, J. Magn. Magn. Mater. 407, 60–68 (2016).  https://doi.org/10.1016/j.jmmm.2016.01.022 CrossRefGoogle Scholar
  34. 34.
    A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Magn. Magn. Mater. 320(21), 2774–2779 (2008).  https://doi.org/10.1016/j.jmmm.2008.06.012 CrossRefGoogle Scholar
  35. 35.
    J. Smit, H.P.J. Wijn, Ferrites (Philips Technical Library, Eindhovan, 1959), p. 149Google Scholar
  36. 36.
    K. Maaz, W. Khalid, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan, Physica E 41, 593–599 (2009).  https://doi.org/10.1016/j.physe.2008.10.009 CrossRefGoogle Scholar
  37. 37.
    S. Joshi, M. Kumar, S. Chhoker, A. Kumar, M. Singh, J. Magn. Magn. Mater. (2016).  https://doi.org/10.1016/j.jmmm.2016.11.090 CrossRefGoogle Scholar
  38. 38.
    Z.C. Xu, J. Appl. Phys. 93(8), 4746–4749 (2003).  https://doi.org/10.1063/1.1562745 CrossRefGoogle Scholar
  39. 39.
    S.K. Nath, K.H. Maria, S. Noor, S.S. Sikder, S.S. Hoque, M.A. Hakim, J. Magn. Magn. Mater. 324(13), 2116–2120 (2012).  https://doi.org/10.1016/j.jmmm.2012.02.023 CrossRefGoogle Scholar
  40. 40.
    J.C. Maxwell, Electricity and Magnetism, vol. 328 (Oxford University Press, New York, 1954)Google Scholar
  41. 41.
    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83(1), 121–124 (1951).  https://doi.org/10.1103/PhysRev.83.121 CrossRefGoogle Scholar
  42. 42.
    A.A. Kadam, S.S. Shinde, S.P. Yadav, P.S. Patil, K.Y. Rajpure, J. Magn. Magn. Mater. 329, 59–64 (2013).  https://doi.org/10.1016/j.jmmm.2012.10.008 CrossRefGoogle Scholar
  43. 43.
    I. Soibam, Int. J. Mater Sci. Eng. 4(1), 54–59 (2016).  https://doi.org/10.17706/ijmse.2016.4.1.54-59 CrossRefGoogle Scholar
  44. 44.
    B. Thangjam, I. Soibam., J. Nanomat. Article ID 5756197, 1–10 (2017).  https://doi.org/10.1155/2017/5756197 CrossRefGoogle Scholar
  45. 45.
    C. Sujatha, K.V. Reddy, K.S. Babu, A.R.C. Reddy, K.H. Rao, Physica B 407, 1232–1237 (2012).  https://doi.org/10.1016/j.physb.2012.01.108 CrossRefGoogle Scholar
  46. 46.
    K.M. Batoo, M.S. Ansari, Nano Res. Lett. 7(1), 112 (2012).  https://doi.org/10.1186/1556-276X-7-112 CrossRefGoogle Scholar
  47. 47.
    K.W. Wagner, Ann. Phys. 40, 817–819 (1973)Google Scholar
  48. 48.
    S. Joshi, M. Kumar, H. Pandey, M. Singh, P. Pal, J. Alloys Compd. (2018).  https://doi.org/10.1016/j.jallcom.2018.07.250 CrossRefGoogle Scholar
  49. 49.
    M.P. Reddy, G. Balakrishnaiah, W. Madhuri, M.V. Ramana, N.R. Reddy, K.V. Siva Kumar, V.R.K. Murthy, R.R. Reddy, J. Phys. Chem. Solids 71(9), 1373–1380 (2010).  https://doi.org/10.1016/j.jpcs.2010.06.007 CrossRefGoogle Scholar
  50. 50.
    M.J. Miah, A.K.M.A. Hossai, Acta Metall. Sin. Engl. Lett. 29(6), 505–517 (2016).  https://doi.org/10.1007/s40195-016-0408-z CrossRefGoogle Scholar
  51. 51.
    P.R. Arjunwadkar, R.R. Patil, J. Alloys Compd. 611, 273–277 (2014).  https://doi.org/10.1016/j.jallcom.2014.05.054 CrossRefGoogle Scholar
  52. 52.
    R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18(11), 115028 (2009).  https://doi.org/10.1088/0964-1726/18/11/115028 CrossRefGoogle Scholar
  53. 53.
    M. Hashim, Alimuddin, S. Kumar, S. Ali, B.H. Koo, H. Chung, R. Kumar, J. Alloys Compd. 511(1), 107–114 (2012).  https://doi.org/10.1016/j.jallcom.2011.08.096 CrossRefGoogle Scholar
  54. 54.
    I.G. Austin, N.F. Mott, Adv. Phys. 18(71), 41–102 (1969).  https://doi.org/10.1080/00018736900101267 CrossRefGoogle Scholar
  55. 55.
    A. Vermaa, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Mater. Sci. Engi. B. 116, 1–6 (2005).  https://doi.org/10.1016/j.mseb.2004.08.011 CrossRefGoogle Scholar
  56. 56.
    C.A. Hogarth, M.H. Islam, S.S.M.S. Rahman, J. Mater. Sci. 28, 518–528 (1993).  https://doi.org/10.1007/bf00357833 CrossRefGoogle Scholar
  57. 57.
    H. Böttger, V.V. Bryksin, Hopping Conduction in Solids (Akademie-Verlag, Berlin, 1985)Google Scholar
  58. 58.
    A.N. Patil, M.G. Patil, K.K. Patankar, V.L. Mathe, R.P. Mahajan, S.A. Patil, Bull. Mater. Sci. 23(5), 447–452 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringInternational Islamic University ChittagongChattogramBangladesh
  2. 2.Department of PhysicsChittagong University of Engineering & TechnologyChattogramBangladesh

Personalised recommendations