Effect of minor scandium addition on the microstructure and properties of Al–50Si alloys for electronic packaging

  • Shuaishuai Yu
  • Richu Wang
  • Chaoqun Peng
  • Zhiyong CaiEmail author
  • Xiang Wu
  • Yan Feng
  • Xiaofeng Wang


Al–50Si alloys for electronic packaging were prepared by gas atomization following hot press sintering, and the influences of adding minor Sc (0.3%) on microstructure and mechanical and thermo-physical properties were studied. The Si phase exhibits a semi-continuous network structure with an average size of 15–20 μm in the alloys with and without Sc addition. Transmission electron microscopy observation indicates that a fine spherical Sc-rich particle distributes at the interface between the Al matrix and Si phase in the Al–50Si-Sc alloy, which is further identified as AlSi2Sc2 (V-phase). The tensile strength, flexural strength, and hardness of the Al–50Si alloy are improved by 16.2%, 8.9%, and 14.7%, respectively, with the introduction of Sc. However, the coefficient of thermal expansion and thermal conductivity decreases slightly in the Al–50Si–Sc alloy as compared with the Al–50Si alloy. The increased strength is mainly attributed to the formation of fine spherical AlSi2Sc2 phase which strengthens the Al matrix.



The authors are grateful for the financial support provided by the National Nature Science Foundation of China (51804349), the China Postdoctoral Science Foundation (2018M632986), the Nature Science Foundation of Hunan Province (2019JJ50766), and the Postdoctoral Science Foundation of Central South University and the Science and Technology Program of Hunan, China (2017GK2261).


  1. 1.
    Y.B. Tang, H.T. Cong, R. Zhong, H.M. Cheng, Carbon 42(15), 3260–3262 (2004)CrossRefGoogle Scholar
  2. 2.
    C. Cui, A. Schulz, J. Epp, H.W. Zoch, J. Mater. Sci. 45(10), 2798–2807 (2010)CrossRefGoogle Scholar
  3. 3.
    W.K. Kang, F. Yilmaz, H.S. Kim, J.M. Koo, S.J. Hong, J. Alloys Compd. 536(S1), S45–S49 (2012)CrossRefGoogle Scholar
  4. 4.
    F. Wang, B.Q. Xiong, Y.A. Zhang, B.H. Zhu, H.W. Liu, Y.G. Wei, Mater. Charact. 59(10), 1455–1457 (2008)CrossRefGoogle Scholar
  5. 5.
    S.C. Hogg, A. Lambourne, A. Ogilvy, P.S. Grant, Scr. Mater. 55(1), 111–114 (2006)CrossRefGoogle Scholar
  6. 6.
    Y.D. Jia, P. Ma, K.G. Prashanth, G. Wang, J. Yi, S. Scudino, F.Y. Cao, J.F. Sun, J. Eckert, J. Alloys Compd. 699, 548–553 (2017)CrossRefGoogle Scholar
  7. 7.
    Q.L. Li, T.D. Xia, Y.F. Lan, W.J. Zhao, L. Fan, P.F. Li, J. Alloys Compd. 577, 232–236 (2013)CrossRefGoogle Scholar
  8. 8.
    Y.D. Jia, F.Y. Cao, S. Scudino, P. Ma, H.C. Li, L. Yu, J. Eckert, J.F. Sun, Mater. Des. 57, 585–591 (2014)CrossRefGoogle Scholar
  9. 9.
    Z.J. Wei, P. Ma, H.W. Wang, C.M. Zou, S. Scudino, K.K. Song, K.G. Prashanth, W. Jiang, J. Eckert, Mater. Des. 65, 387–394 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Furuta, M. Kobayashi, K. Uesugi, A. Takeuchi, T. Aoba, H. Miurab, Mater. Charact. 130, 237–242 (2017)CrossRefGoogle Scholar
  11. 11.
    Q.L. Li, T.D. Xia, Y.F. Lan, W.J. Zhao, L. Fan, P.F. Li, J. Alloys Compd. 562, 25–32 (2013)CrossRefGoogle Scholar
  12. 12.
    W.X. Shi, B. Gao, G.F. Tu, G.F. Tu, S.W. Li, J. Alloys Compd. 508, 480–485 (2010)CrossRefGoogle Scholar
  13. 13.
    Q.L. Li, B.Q. Li, J.B. Li, C.H. Zhang, Mater. Sci. Forum 893, 202–206 (2017)CrossRefGoogle Scholar
  14. 14.
    S.C. Hogg, H.V. Atkinson, Metall. Mater. Trans. A 36(1), 149–159 (2005)CrossRefGoogle Scholar
  15. 15.
    W. Zhang, Y. Liu, J. Yang, J.Z. Dang, H. Xu, Z.M. Du, Mater. Charact. 66, 104–110 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Kim, Met. Mater. Int. 13(2), 103–107 (2007)CrossRefGoogle Scholar
  17. 17.
    J. Røyset, N. Ryum, Int. Mater. Rev. 50(1), 19–44 (2005)CrossRefGoogle Scholar
  18. 18.
    F.G. Leonardo, J.E. Spinelli, A.A. Bogno, M. Gallerneault, H. Heneih, J. Alloys. Compd. 785, 1077–1085 (2019)CrossRefGoogle Scholar
  19. 19.
    N. Raghukiran, R. Kumar, Mater. Sci. Eng., A 657, 123–135 (2016)CrossRefGoogle Scholar
  20. 20.
    S.L. Pramod, A.K.P. Rao, B.S. Murty, S.R. Bakshi, Mater. Sci. Eng. A. 674, 438–450 (2016)CrossRefGoogle Scholar
  21. 21.
    J.Y. Chang, G.H. Kim, I.G. Moon, C.S. Choi, Scr. Mater. 39(3), 307–314 (1998)CrossRefGoogle Scholar
  22. 22.
    L.C. Davis, B.E. Artz, J. Appl. Phys. 77, 4954–4960 (1995)CrossRefGoogle Scholar
  23. 23.
    Z.Y. Cai, C. Zhang, R.C. Wang, C.Q. Peng, K. Qiu, Y. Feng, Mater. Des. 87, 996–1002 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Elomari, M.D. Skibo, A. Sundarrajan, H. Richards, Compos. Sci. Technol. 58, 369–376 (1998)CrossRefGoogle Scholar
  25. 25.
    T.A. Hahn, R.W. Armstrong, Int. J. Thermophys. 9, 179–193 (1988)CrossRefGoogle Scholar
  26. 26.
    N. Raghukiran, R. Kumar, Mater. Sci. Eng. A 641, 138–147 (2015)CrossRefGoogle Scholar
  27. 27.
    Z.Y. Cai, C. Zhang, R.C. Wang, C.Q. Peng, X. Wu, H.P. Li, Mater. Sci. Eng. A 730, 57–65 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shuaishuai Yu
    • 1
  • Richu Wang
    • 1
    • 2
    • 3
  • Chaoqun Peng
    • 1
  • Zhiyong Cai
    • 1
    • 2
    Email author
  • Xiang Wu
    • 1
  • Yan Feng
    • 1
    • 2
  • Xiaofeng Wang
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.National Key Laboratory of Science and Technology for National Defence on High-Strength Structural MaterialsCentral South UniversityChangshaChina
  3. 3.Key Laboratory of Electronic Packaging and Advanced Functional MaterialsChangshaChina

Personalised recommendations