Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20734–20740 | Cite as

An agar sandwich method for patterning transparent conducting oxides

  • Daisuke KajiyaEmail author


Transparent electrodes are frequently used to drive opto-electronic devices, and the patterning of these electrodes is essential. The present work demonstrates a facile means of removing transparent conducting oxides (TCOs) from a glass substrate in selected areas. When agarose gel (agar), a material typically used in desserts, is sandwiched between two TCO-coated glass substrates and connected to a dry cell, the TCO is removed from the glass at the agar stamping area within 2 min. This method allows etching of TCOs using acid-free, inexpensive, and readily available starting materials. Analyses by optical microscopy, transmission spectroscopy, electrical resistance measurements, X-ray diffraction, and X-ray photoelectron spectroscopy demonstrate that this etching occurs as a result of reduction of the TCO in conjunction with the electrolysis of water at the interface between the TCO and agar surfaces. Using this technique, high-throughput patterning of TCOs with an edge resolution of several micrometres was achieved. Furthermore, the shape of the agar template can be readily changed simply by cutting the agar using scissors. Therefore, this method provides a useful means for both researchers and students to easily fabricate patterned substrates for use in electronics and related technologies.



This work was supported by JSPS KAKENHI Grants-in-Aid for Young Scientists (B) (Grant Numbers 26790015 and 17K14082). The author acknowledges Dr. Dote of Hiroshima University for help with XPS measurements and is grateful to Ms. Isagai of the Foundation for Promotion of Material Science and Technology of Japan for conducting XRD measurements. The author is also grateful to Ms. Tanaka of the Hiroshima City Industrial Promotion Centre for the stylus-type roughness instrument. The author also wishes to acknowledge Mr. Nawachi and Mr. Ito of the Hiroshima Prefectural Technology Research Institute for the sheet resistance metre. Transmission spectra and FE-SEM images were measured using shared equipment in the Cryogenics and Instrumental Analysis Division of N-BARD, Hiroshima University.


  1. 1.
    K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)Google Scholar
  2. 2.
    H. Hosono, K. Ueda, In Springer Handbook of Electronic and Photonic Materials, ed. By S. Kasap, P. Capper (Springer, Berlin, 2006) p. 1391Google Scholar
  3. 3.
    R.M. Pasquarelli, D.S. Ginley, R. O’Hayre, Chem. Soc. Rev. 40, 5406 (2011)Google Scholar
  4. 4.
    I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)Google Scholar
  5. 5.
    K. Ide, K. Nomura, H. Hosono, T. Kamiya, Phys. Status Solidi A 216, 1800372 (2019)Google Scholar
  6. 6.
    K.V. Khot, T.D. Dongale, S.S. Mali, C.K. Hong, R.K. Kamat, P.N. Bhosale, J. Mater. Sci. 52, 9709 (2017)Google Scholar
  7. 7.
    K.V. Khot, S.S. Mali, R.M. Mane, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, J. Mater. Sci. 26, 6897 (2015)Google Scholar
  8. 8.
    C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Chem. Rev. 119, 3418 (2019)Google Scholar
  9. 9.
    T.L. Breen, P.M. Fryer, R.W. Nunes, M.E. Rothwell, Langmuir 18, 194 (2002)Google Scholar
  10. 10.
    N. Yamamoto, H. Makinoa, S. Osone, A. Ujihara, T. Ito, H. Hokari, T. Maruyama, T. Yamamoto, Thin Solid Films 520, 4131 (2012)Google Scholar
  11. 11.
    M. Scholten, J.E.A.M. van den Meerakker, J. Electrochem. Soc. 140, 471 (1993)Google Scholar
  12. 12.
    M. Takabatake, Y. Wakui, N. Konishi, J. Electrochem. Soc. 142, 2470 (1995)Google Scholar
  13. 13.
    M.M. Salunkhe, K.V. Khot, P.S. Patil, T.M. Bhave, P.N. Bhosale, New J. Chem. 39, 3405 (2015)Google Scholar
  14. 14.
    K.V. Khot, S.S. Mali, V.B. Ghanwat, S.D. Kharade, R.M. Mane, C.K. Hong, P.N. Bhosale, New J. Chem. 40, 3277 (2016)Google Scholar
  15. 15.
    C.J. Traverse, R. Pandey, M.C. Barr, R.R. Lunt, Nat. Energy 2, 849 (2017)Google Scholar
  16. 16.
    Z. Wang, C. Chen, K. Wu, H. Chong, H. Ye, Phys. Status Solidi A 216, 1700794 (2019)Google Scholar
  17. 17.
    H.D. Belitz, W. Grosch, P. Schieberle, Food Chemistry, 4th edn. (Springer, Berlin, 2009), pp. 302–303Google Scholar
  18. 18.
    G.A. Burdock, Encyclopedia of food and color additives (CRC Press, Boca Raton, 1997), p. 53Google Scholar
  19. 19.
    S.B. Smith, P.K. Aldridge, J.B. Callis, Science 243, 203 (1989)Google Scholar
  20. 20.
    F. Carle, M. Frank, M.V. Olson, Science 232, 65 (1986)Google Scholar
  21. 21.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular biology of the cell, 5th edn. (Garland Science, New York, 2008), p. 534Google Scholar
  22. 22.
    D. Voet, J.G. Voet, Biochemistry (Wiley, Hoboken, 2011), p. 147Google Scholar
  23. 23.
    C.J. Campbell, R. Klajn, M. Fialkowski, B.A. Grzybowski, Langmuir 21, 418 (2005)Google Scholar
  24. 24.
    B.A. Grzybowski, K.J.M. Bishop, C.J. Campbell, M. Fialkowski, S.K. Smoukov, Soft Matter 1, 114 (2005)Google Scholar
  25. 25.
    S.K. Smoukov, K.J.M. Bishop, R. Klajn, C.J. Campbell, B.A. Grzybowski, Adv. Mater. 17, 1361 (2005)Google Scholar
  26. 26.
    S.K. Smoukov, B.A. Grzybowski, Chem. Mater. 18, 4722 (2006)Google Scholar
  27. 27.
    B.A. Grzybowski, K.J.M. Bishop, Small 5, 22 (2009)Google Scholar
  28. 28.
    T.S. Hansen, K. West, O. Hassager, N.B. Larsen, Adv. Mater. 19, 3261 (2007)Google Scholar
  29. 29.
    M. Mayer, J. Yang, I. Gitlin, D.H. Gracias, G.M. Whitesides, Proteomics 4, 2366 (2004)Google Scholar
  30. 30.
    M.J. Jang, Y. Nam, Macromol. Biosci. 15, 613 (2015)Google Scholar
  31. 31.
    Y. Xia, Y. Tang, H. Wu, J. Zhang, Z. Li, F. Pan, S. Wang, X. Wang, H. Xu, J.R. Lu, A.C.S. Appl, Mater. Interfaces 9, 1255 (2017)Google Scholar
  32. 32.
    J.L. Zhuang, Y. Zhang, X.Y. Liu, C. Wang, H.L. Mao, X. Du, J. Tang, Appl. Surf. Sci. 469, 90 (2019)Google Scholar
  33. 33.
    X. Ma, D. Zhao, M. Xue, H. Wang, T. Cao, Angew. Chem. Int. Ed. 49, 5537 (2010)Google Scholar
  34. 34.
    L. Zhang, J.L. Zhuang, X.Z. Ma, J. Tang, Z.W. Tian, Electrochem. Commun. 9, 2529 (2007)Google Scholar
  35. 35.
    J. Tang, J.L. Zhuang, L. Zhang, W.H. Wang, Z.W. Tian, Electrochim. Acta 53, 5628 (2008)Google Scholar
  36. 36.
    L.H. Jin, B.Y. Yang, L. Zhang, P.L. Lin, C. Cui, J. Tang, Langmuir 25, 5380 (2009)Google Scholar
  37. 37.
    S. Sekine, S. Nakanishi, T. Miyake, K. Nagamine, H. Kaji, M. Nishizawa, Langmuir 26, 11526 (2010)Google Scholar
  38. 38.
    C.G. Granqvist, A. Hultåker, Thin Solid Films 411, 1 (2002)Google Scholar
  39. 39.
    M. Grell, D.D.C. Bradley, Adv. Mater. 11, 895 (1999)Google Scholar
  40. 40.
    K.H. Weinfurtner, H. Fujikawa, S. Tokito, Y. Taga, Appl. Phys. Lett. 76, 2502 (2000)Google Scholar
  41. 41.
    D. Neher, Macromol. Rapid Commun. 22, 1365 (2001)Google Scholar
  42. 42.
    M. Imanishi, D. Kajiya, T. Koganezawa, K. Saitow, Sci. Rep. 7, 5141 (2017)Google Scholar
  43. 43.
    CRC Handbook of Chemistry and Physics, 95th edn. W.M. Haynes Ed. (CRC Press, Boca Raton, FL, 2014), pp. 14–19Google Scholar
  44. 44.
    C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, L.D. Zhang, Adv. Mater. 13, 1330 (2001)Google Scholar
  45. 45.
    K. Soulantica, L. Erades, M. Sauvan, F. Senocq, A. Maisonnat, B. Chaudret, Adv. Funct. Mater. 13, 553 (2003)Google Scholar
  46. 46.
    M. Gross, N. Linse, I. Maksimenko, P.J. Wellmann, Adv. Eng. Mater. 11, 295 (2009)Google Scholar
  47. 47.
    NIST X-ray Photoelectron Spectroscopy Database, ver. 4.1. (NIST, 2012) Accessed 2 Sept 2019
  48. 48.
    C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, N.R. Armstrong, Langmuir 18, 450 (2002)Google Scholar
  49. 49.
    M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrog. Energy 38, 4901 (2013)Google Scholar
  50. 50.
    T.A. Davis, S.L. Athey, M.L. Vandevender, C.L. Crihfield, C.C.E. Kolanko, S. Shao, M.C.G. Ellington, J.K. Dicks, J.S. Carver, L.A. Holland, J. Chem. Educ. 92, 116 (2015)Google Scholar
  51. 51.
    C.E. Housecroft, A.G. Sharpe, Inorganic Chemistry, 4th edn. (England, Pearson Education Limited, 2012), pp. 445–473Google Scholar
  52. 52.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)Google Scholar
  53. 53.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)Google Scholar
  54. 54.
    A.K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 119, 3036 (2019)Google Scholar
  55. 55.
    S. Ray, R. Banerjee, N. Basu, A.K. Batabyal, A.K. Barua, J. Appl. Phys. 54, 3497 (1983)Google Scholar
  56. 56.
    M. Katayama, Thin Solid Films 341, 140 (1999)Google Scholar
  57. 57.
    Y. Xin, K. Nishio, K. Saitow, Appl. Phys. Lett. 106, 201102 (2015)Google Scholar
  58. 58.
    A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)Google Scholar
  59. 59.
    K.H. Kim, K.C. Park, D.Y. Ma, J. Appl. Phys. 81, 7764 (1997)Google Scholar
  60. 60.
    X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83, 1875 (2003)Google Scholar
  61. 61.
    H. Kim, J.S. Horwitz, W.H. Kim, A.J. Mäkinen, Z.H. Kafafi, D.B. Chrisey, Thin Solid Films 420, 539 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Natural Science Center for Basic Research and Development (N-BARD)Hiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Department of Chemistry, Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations