Skip to main content
Log in

Study of TiO2 nanotubes decorated with PbS nanoparticles elaborated by pulsed laser deposition: microstructural, optoelectronic and photoelectrochemical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Titanium dioxide nanotube arrays (TiO2 NTAs) have been synthesized using the electrochemical anodization procedure. Lead sulfide nanoparticles (PbS NPs) were deposited on TiO2 NTAs (PbS NPs/TiO2 NTAs) using the pulsed laser deposition (PLD) method. The prepared samples (PbS NPs/TiO2 NTAs) were characterized using scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–Vis spectroscopy and photoluminescence. The size of the PbS NPs was controlled by varying the number of laser pulses (NLP) during the PLD process. TEM observations show that the PbS NPs are in the range of 10–20 nm, consistent with the results obtained from XRD. HRTEM and diffuse reflectivity show that, at NLP ≥ 2500, the growth of the PbS NPs occurs on a previously formed PbS layer. Transmission and absorption spectra show that the PbS-NPs have an indirect optical bandgap which is particle size independent. This optical bandgap corresponds to excitonic transitions, which are greatly affected by oxygen defects, off-stoichiometry and other surface state defects, particularly for smaller NPs (NLP < 2500). The absorption spectra of the TiO2 NTAs show that the PbS NPs extend the absorption range of the TiO2-NTAs from the ultraviolet to the visible region, indicating that the PbS NPs/TiO2 NTAs heterojunction facilitates the separation of the photogenerated charge carriers. Photoelectrochemical analyses show that a maximum photocurrent current density of ~1.05 mA/cm2 and a photoelectrochemical conversion efficiency of 2.5% are reached for NLP = 2500 under an illumination of 100 mW/cm2 in the UV–Vis range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Google Scholar 

  2. H. Yu, S. Zhang, H. Zhao, G. Will, P. Liu, An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells. Electrochim. Acta 54, 1319–1324 (2009)

    CAS  Google Scholar 

  3. M. Zlamal, J.M. Macak, P. Schmuki, J. Krysa, Elec-trochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochem. Commun. 9, 2822–2826 (2007)

    CAS  Google Scholar 

  4. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 12, 169–189 (2012)

    Google Scholar 

  5. S. Girish Kumar, L. Gomathi Devi, Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115, 13211–13241 (2011)

    Google Scholar 

  6. B.L. He, B. Dong, H.L. Li, Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery. Electrochem. Commun. 9, 425–430 (2007)

    CAS  Google Scholar 

  7. H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137, 13161–13166 (2015)

    CAS  Google Scholar 

  8. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano-Lett 12, 1690–1696 (2012)

    CAS  Google Scholar 

  9. H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116, 129–136 (2014)

    CAS  Google Scholar 

  10. M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Google Scholar 

  11. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130, 1124–1125 (2008)

    CAS  Google Scholar 

  12. K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett. 7, 3739–3746 (2007)

    CAS  Google Scholar 

  13. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624–627 (2003)

    CAS  Google Scholar 

  14. B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.K. Suh, TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 58, 680–684 (2007)

    CAS  Google Scholar 

  15. A. Hajjaji, M. Elabidi, K. Trabelsi, A.A. Assadi, B. Bessais, S. Rtimi, Bacterial adhesion and inactivation on Ag decorated TiO2 Nanotubes under visible light: effect of the nanotubes geometry on the photocatalytic activity. Colloids Surf. B 170, 92–98 (2018)

    CAS  Google Scholar 

  16. M. Gaidi, K. Trabelsi, A. Hajjaji, M.L. Chourou, A.N. Alhazaa, B. Bessais, M.A. El Khakani, Optimizing the photochemical conversion of UV–Vis light of silver Nanoparticles decorated TiO2 nanotubes based photoanodes. Nanotechnology 29, 015703 (2018)

    CAS  Google Scholar 

  17. M. Horn, C.F. Schwerdtfeger, E.P. Meagher, Refinement of the structure of anatase at several temperatures. Z Kristallogr 136, 273–281 (1972)

    CAS  Google Scholar 

  18. W.H. Baur, A.A. Khan, Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallogr. Sect. B 27, 2133–2139 (1971)

    CAS  Google Scholar 

  19. R.W.G. Wyckoff, Crystal Structures, 2nd edn. (Interscience, New York, 1963), pp. 239–444

    Google Scholar 

  20. W. Wunderlich, T. Oekermann, L. Miao, N.T. Hue, S. Tanemura, M. Tanemura, Electronic properties of nano-porous TiO2- and ZnO-thin films- comparison of simulations and experiments. J. Ceram. Proc. Res 5, 343–354 (2004)

    Google Scholar 

  21. B. Chen, J.B. Hou, K. Lu, Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. Langmuir 29, 5911–5919 (2013)

    CAS  Google Scholar 

  22. C.W. Lai, S. Sreekantan, Preparation of hybrid WO3–TiO2 nanotube photoelectrodes using anodization and wet impregnation: improved water- hydrogen Generation performance. Int. J. Hydrog. Energy 38, 2156–2166 (2013)

    CAS  Google Scholar 

  23. Z. Su, L. Jiang, F.J. Prof, M. Hong, Formation of crystalline TiO2 by anodic oxidation of titanium. Prog. Nat. Sci. 23, 294–301 (2013)

    Google Scholar 

  24. C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, F. Giustino, S.J. Jung, K. Kern, TiO2 anatase with a bandgap in the visible region. Nano Lett. 14, 6533–6538 (2014)

    CAS  Google Scholar 

  25. I.S. Cho, Z.B. Chen, A. Forman, D. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011)

    CAS  Google Scholar 

  26. J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24–28 (2006)

    CAS  Google Scholar 

  27. H. Weller, Quantized semiconductor particles: a novel state of matter for materials science. Adv. Mater. 5, 88–95 (1993)

    CAS  Google Scholar 

  28. M. Xiao, Y. Wang, X. Wu, Z.Dang Huang, Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties. Nanotechnology 19, 015706 (2007)

    Google Scholar 

  29. J.S. Luo, L. Ma, T. He, C.F. Ng, S.H. Wang, H.D. Sun, H.J. Fan, TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. J. Phys. Chem. C 116, 11956–11963 (2012)

    CAS  Google Scholar 

  30. G. Ai, R. Mo, Q. Chen, H. Xu, S. Yang, H. Li, J. Zhong, TiO2/Bi2S3 core–shell nanowire arrays for photoelectrochemical hydrogen generation. RSC Adv. 5, 13544–13549 (2015)

    CAS  Google Scholar 

  31. Q. Wang, X. Yang, L. Chi, M. Cui, Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes. Electrochim. Acta 91, 330–336 (2013)

    CAS  Google Scholar 

  32. C. Ratanatawanate, C. Xiong, K.J. Balkus, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2, 1682–1688 (2008)

    CAS  Google Scholar 

  33. M.H. Patel, T.K. Chaudhuri, V.K. Patel, T. Shripathi, U. Deshpande, N.P. Lallac, Dip-coated PbS/PVP nanocomposite films with tunable bandgap. RSC Adv. 7, 4422–4429 (2017)

    CAS  Google Scholar 

  34. I. Ka, V. Le Borgne, D. Ma, M.A. El Khakani, Pulsed laser ablation based direct synthesis of single-wall carbon nanotube/PbS quantum dot nanohybrids exhibiting strong, spectrally wide and fast photoresponse. J. Adv. Mater. 24, 6289 (2012)

    CAS  Google Scholar 

  35. I. Ka, B. Gonfa, V. Le Borgne, D. Ma, M.A. El Khakani, Pulsed laser ablation-based synthesis of PbS-quantum dot-decorated one-dimensional nanostructures and their direct integration into highly efficient nanohybrid heterojunction-based solar cells. Adv. Funct. Mater. 24, 1 (2014)

    Google Scholar 

  36. D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev 110, 389–458 (2010)

    CAS  Google Scholar 

  37. P. Papagiorgis, A. Stavrinadis, A. Othonos, G. Konstantatos, The Influence of doping on the optoelectronic properties of PbS colloidal. Sci. Rep. 6, 18735 (2016)

    CAS  Google Scholar 

  38. C. Ratanatawanate, Y. Tao, K.J. Balkus, Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites. J. Phys. Chem. C 113, 10755–10760 (2009)

    CAS  Google Scholar 

  39. Y. Luo, C. Dong, X. Li, Y. Tian, A photoelectrochemical sensor for lead ion through electrodeposition of PbS nanoparticles onto TiO2 nanotubes. J. Electroanal. Chem. 759, 51–54 (2015)

    CAS  Google Scholar 

  40. S. Seghaier, N. Kamoun, R. Brini, A.B. Amara, Structural and optical properties of PbS thin films deposited by chemical bath deposition. Mater. Chem. Phys. 97, 71–80 (2006)

    CAS  Google Scholar 

  41. D. Kumar, G. Agarwal, B. Tripathi, D. Vyas, V. Kulshrestha, Characterization of PbS nanoparticles synthesized by chemical bath deposition. J. Alloy. Compd. 484, 463–466 (2009)

    CAS  Google Scholar 

  42. L.F. Koao, F.B. Dejene, H.C. Swart, Synthesis of PbS nanostructures by chemical bath deposition method. Int. J. Electrochem. Sci. 9, 1747–1757 (2014)

    Google Scholar 

  43. X. Zhang, B. Wang, Z. Liu, Tuning PbS QDs deposited onto TiO2 nanotube arrays to improve photoelectrochemical performances. J. Colloid Interface Sci. 484, 213–219 (2016)

    CAS  Google Scholar 

  44. J. Puiso, S. Tamulevičius, G. Laukaitis, S. Lindroos, M. Leskelä, V. Snitka, Growth of PbS thin films on silicon substrate by SILAR technique. Thin Solid Films 403, 457–461 (2002)

    Google Scholar 

  45. J. Seo, S.J. Kim, W.J. Kim, R. Singh, M. Samoc, A.N. Cartwright, P.N. Prasad, Enhancement of the photovoltaic performance in PbS nanocrystal: P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 20, 095202 (2009)

    Google Scholar 

  46. J. Tang, K. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011)

    CAS  Google Scholar 

  47. X. Lan, J. Bai, S. Masala, S.M. Thon, Y. Ren, I.J. Kramer, S. Hoogland, A. Simchi, G.I. Koleilat, D. Paz-Soldan, Z. Ning, A.J. Labelle, J.Y. Kim, G. Jabbour, E.H. Sargent, Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25, 1769–1773 (2013)

    CAS  Google Scholar 

  48. Neil P. Dasgupta, HeeJoon Jung, Orlando Trejo, Matthew T. McDowell, Aaron Hryciw, Mark Brongersma, Robert Sinclair, Fritz B. Prinz, Layer deposition of lead sulfide quantum dots on nanowire surfaces. Nano Lett. 11, 934 (2011)

    CAS  Google Scholar 

  49. K. Trabelsi, A. Hajjaji, M. Gaidi, B. Bessais, M.A. El Khakani, Enhancing the photoelectrochemical response of TiO2 nanotubes through their nanodecoration by pulsed-laser-deposited Ag nanoparticles. J. Appl. Phys. 122, 064503 (2017)

    Google Scholar 

  50. Donghun Kim, Dong-Ho Kim, Joo-Hyoung Lee, Jeffrey C. Grossman, Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys. Rev. Lett. 110, 196802 (2013)

    Google Scholar 

  51. A. Guinier, Théorie et Technique de la Radiocristallographie (Dunod, Paris, 1964)

    Google Scholar 

  52. I. Ka, Doctoral dissertation, Université du Québec, Institut national de la recherche scientifique. (2015)

  53. Iwan Moreels, Karel Lambert, Dries Smeets, David De Muynck, Tom Nollet, José C. Martins, Frank Vanhaecke, André Vantomme, Christophe Delerue, Guy Allan, Zeger Hens, Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009)

    CAS  Google Scholar 

  54. Inuk Kang, Frank W. Wise, Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. 14, 1632–1646 (1997)

    CAS  Google Scholar 

  55. P. Kubelka, F. Munk, Zeit. Für Tekn. Physik 12, 593–601 (1931)

    Google Scholar 

  56. A. Thibert, F. Andrew Frame, E. Busby, M.A. Holmes, F.E. Osterloh, D.S. Larsen, Sequestering high-energy electrons to facilitate photocatalytic hydrogen generation in CdSe/CdS nanocrystals. J. Phys. Chem. Lett. 2, 2688–2694 (2011)

    CAS  Google Scholar 

  57. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    CAS  Google Scholar 

  58. S.U. Khan, M. Al-Shahry, W.B. Jr, Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002)

    CAS  Google Scholar 

Download references

Acknowledgements

Dr. A. Hajjaji would like to acknowledge the financial support the Tunisian Ministry of higher education and scientific research. Prof. M. A. El Khakani is also grateful for the financial support of the Natural Sciences and Engineering Research Council (NSERC) of Canada and from the FRQNT (Le Fonds de Recherche du Quebec Nature et Technologies) of Quebec. Dr. Ibrahima Ka thanks FRQNT for its support through a personal fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hajjaji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajjaji, A., Jemai, S., Trabelsi, K. et al. Study of TiO2 nanotubes decorated with PbS nanoparticles elaborated by pulsed laser deposition: microstructural, optoelectronic and photoelectrochemical properties. J Mater Sci: Mater Electron 30, 20935–20946 (2019). https://doi.org/10.1007/s10854-019-02436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02436-0

Keywords

Navigation