Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 24, pp 20935–20946 | Cite as

Study of TiO2 nanotubes decorated with PbS nanoparticles elaborated by pulsed laser deposition: microstructural, optoelectronic and photoelectrochemical properties

  • A. HajjajiEmail author
  • S. Jemai
  • K. Trabelsi
  • A. Kouki
  • I. Ben Assaker
  • I. Ka
  • M. Gaidi
  • B. Bessais
  • M. A. El Khakani


Titanium dioxide nanotube arrays (TiO2 NTAs) have been synthesized using the electrochemical anodization procedure. Lead sulfide nanoparticles (PbS NPs) were deposited on TiO2 NTAs (PbS NPs/TiO2 NTAs) using the pulsed laser deposition (PLD) method. The prepared samples (PbS NPs/TiO2 NTAs) were characterized using scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–Vis spectroscopy and photoluminescence. The size of the PbS NPs was controlled by varying the number of laser pulses (NLP) during the PLD process. TEM observations show that the PbS NPs are in the range of 10–20 nm, consistent with the results obtained from XRD. HRTEM and diffuse reflectivity show that, at NLP ≥ 2500, the growth of the PbS NPs occurs on a previously formed PbS layer. Transmission and absorption spectra show that the PbS-NPs have an indirect optical bandgap which is particle size independent. This optical bandgap corresponds to excitonic transitions, which are greatly affected by oxygen defects, off-stoichiometry and other surface state defects, particularly for smaller NPs (NLP < 2500). The absorption spectra of the TiO2 NTAs show that the PbS NPs extend the absorption range of the TiO2-NTAs from the ultraviolet to the visible region, indicating that the PbS NPs/TiO2 NTAs heterojunction facilitates the separation of the photogenerated charge carriers. Photoelectrochemical analyses show that a maximum photocurrent current density of ~1.05 mA/cm2 and a photoelectrochemical conversion efficiency of 2.5% are reached for NLP = 2500 under an illumination of 100 mW/cm2 in the UV–Vis range.


PLD PbS nanoparticles TiO2 nanotubes Photoelectrochemical properties 



Dr. A. Hajjaji would like to acknowledge the financial support the Tunisian Ministry of higher education and scientific research. Prof. M. A. El Khakani is also grateful for the financial support of the Natural Sciences and Engineering Research Council (NSERC) of Canada and from the FRQNT (Le Fonds de Recherche du Quebec Nature et Technologies) of Quebec. Dr. Ibrahima Ka thanks FRQNT for its support through a personal fellowship.


  1. 1.
    B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)Google Scholar
  2. 2.
    H. Yu, S. Zhang, H. Zhao, G. Will, P. Liu, An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells. Electrochim. Acta 54, 1319–1324 (2009)Google Scholar
  3. 3.
    M. Zlamal, J.M. Macak, P. Schmuki, J. Krysa, Elec-trochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochem. Commun. 9, 2822–2826 (2007)Google Scholar
  4. 4.
    K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 12, 169–189 (2012)Google Scholar
  5. 5.
    S. Girish Kumar, L. Gomathi Devi, Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115, 13211–13241 (2011)Google Scholar
  6. 6.
    B.L. He, B. Dong, H.L. Li, Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery. Electrochem. Commun. 9, 425–430 (2007)Google Scholar
  7. 7.
    H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137, 13161–13166 (2015)Google Scholar
  8. 8.
    X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano-Lett 12, 1690–1696 (2012)Google Scholar
  9. 9.
    H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116, 129–136 (2014)Google Scholar
  10. 10.
    M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001)Google Scholar
  11. 11.
    W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130, 1124–1125 (2008)Google Scholar
  12. 12.
    K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett. 7, 3739–3746 (2007)Google Scholar
  13. 13.
    O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624–627 (2003)Google Scholar
  14. 14.
    B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.K. Suh, TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 58, 680–684 (2007)Google Scholar
  15. 15.
    A. Hajjaji, M. Elabidi, K. Trabelsi, A.A. Assadi, B. Bessais, S. Rtimi, Bacterial adhesion and inactivation on Ag decorated TiO2 Nanotubes under visible light: effect of the nanotubes geometry on the photocatalytic activity. Colloids Surf. B 170, 92–98 (2018)Google Scholar
  16. 16.
    M. Gaidi, K. Trabelsi, A. Hajjaji, M.L. Chourou, A.N. Alhazaa, B. Bessais, M.A. El Khakani, Optimizing the photochemical conversion of UV–Vis light of silver Nanoparticles decorated TiO2 nanotubes based photoanodes. Nanotechnology 29, 015703 (2018)Google Scholar
  17. 17.
    M. Horn, C.F. Schwerdtfeger, E.P. Meagher, Refinement of the structure of anatase at several temperatures. Z Kristallogr 136, 273–281 (1972)Google Scholar
  18. 18.
    W.H. Baur, A.A. Khan, Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallogr. Sect. B 27, 2133–2139 (1971)Google Scholar
  19. 19.
    R.W.G. Wyckoff, Crystal Structures, 2nd edn. (Interscience, New York, 1963), pp. 239–444Google Scholar
  20. 20.
    W. Wunderlich, T. Oekermann, L. Miao, N.T. Hue, S. Tanemura, M. Tanemura, Electronic properties of nano-porous TiO2- and ZnO-thin films- comparison of simulations and experiments. J. Ceram. Proc. Res 5, 343–354 (2004)Google Scholar
  21. 21.
    B. Chen, J.B. Hou, K. Lu, Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. Langmuir 29, 5911–5919 (2013)Google Scholar
  22. 22.
    C.W. Lai, S. Sreekantan, Preparation of hybrid WO3–TiO2 nanotube photoelectrodes using anodization and wet impregnation: improved water- hydrogen Generation performance. Int. J. Hydrog. Energy 38, 2156–2166 (2013)Google Scholar
  23. 23.
    Z. Su, L. Jiang, F.J. Prof, M. Hong, Formation of crystalline TiO2 by anodic oxidation of titanium. Prog. Nat. Sci. 23, 294–301 (2013)Google Scholar
  24. 24.
    C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, F. Giustino, S.J. Jung, K. Kern, TiO2 anatase with a bandgap in the visible region. Nano Lett. 14, 6533–6538 (2014)Google Scholar
  25. 25.
    I.S. Cho, Z.B. Chen, A. Forman, D. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011)Google Scholar
  26. 26.
    J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24–28 (2006)Google Scholar
  27. 27.
    H. Weller, Quantized semiconductor particles: a novel state of matter for materials science. Adv. Mater. 5, 88–95 (1993)Google Scholar
  28. 28.
    M. Xiao, Y. Wang, X. Wu, Z.Dang Huang, Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties. Nanotechnology 19, 015706 (2007)Google Scholar
  29. 29.
    J.S. Luo, L. Ma, T. He, C.F. Ng, S.H. Wang, H.D. Sun, H.J. Fan, TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. J. Phys. Chem. C 116, 11956–11963 (2012)Google Scholar
  30. 30.
    G. Ai, R. Mo, Q. Chen, H. Xu, S. Yang, H. Li, J. Zhong, TiO2/Bi2S3 core–shell nanowire arrays for photoelectrochemical hydrogen generation. RSC Adv. 5, 13544–13549 (2015)Google Scholar
  31. 31.
    Q. Wang, X. Yang, L. Chi, M. Cui, Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes. Electrochim. Acta 91, 330–336 (2013)Google Scholar
  32. 32.
    C. Ratanatawanate, C. Xiong, K.J. Balkus, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2, 1682–1688 (2008)Google Scholar
  33. 33.
    M.H. Patel, T.K. Chaudhuri, V.K. Patel, T. Shripathi, U. Deshpande, N.P. Lallac, Dip-coated PbS/PVP nanocomposite films with tunable bandgap. RSC Adv. 7, 4422–4429 (2017)Google Scholar
  34. 34.
    I. Ka, V. Le Borgne, D. Ma, M.A. El Khakani, Pulsed laser ablation based direct synthesis of single-wall carbon nanotube/PbS quantum dot nanohybrids exhibiting strong, spectrally wide and fast photoresponse. J. Adv. Mater. 24, 6289 (2012)Google Scholar
  35. 35.
    I. Ka, B. Gonfa, V. Le Borgne, D. Ma, M.A. El Khakani, Pulsed laser ablation-based synthesis of PbS-quantum dot-decorated one-dimensional nanostructures and their direct integration into highly efficient nanohybrid heterojunction-based solar cells. Adv. Funct. Mater. 24, 1 (2014)Google Scholar
  36. 36.
    D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev 110, 389–458 (2010)Google Scholar
  37. 37.
    P. Papagiorgis, A. Stavrinadis, A. Othonos, G. Konstantatos, The Influence of doping on the optoelectronic properties of PbS colloidal. Sci. Rep. 6, 18735 (2016)Google Scholar
  38. 38.
    C. Ratanatawanate, Y. Tao, K.J. Balkus, Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites. J. Phys. Chem. C 113, 10755–10760 (2009)Google Scholar
  39. 39.
    Y. Luo, C. Dong, X. Li, Y. Tian, A photoelectrochemical sensor for lead ion through electrodeposition of PbS nanoparticles onto TiO2 nanotubes. J. Electroanal. Chem. 759, 51–54 (2015)Google Scholar
  40. 40.
    S. Seghaier, N. Kamoun, R. Brini, A.B. Amara, Structural and optical properties of PbS thin films deposited by chemical bath deposition. Mater. Chem. Phys. 97, 71–80 (2006)Google Scholar
  41. 41.
    D. Kumar, G. Agarwal, B. Tripathi, D. Vyas, V. Kulshrestha, Characterization of PbS nanoparticles synthesized by chemical bath deposition. J. Alloy. Compd. 484, 463–466 (2009)Google Scholar
  42. 42.
    L.F. Koao, F.B. Dejene, H.C. Swart, Synthesis of PbS nanostructures by chemical bath deposition method. Int. J. Electrochem. Sci. 9, 1747–1757 (2014)Google Scholar
  43. 43.
    X. Zhang, B. Wang, Z. Liu, Tuning PbS QDs deposited onto TiO2 nanotube arrays to improve photoelectrochemical performances. J. Colloid Interface Sci. 484, 213–219 (2016)Google Scholar
  44. 44.
    J. Puiso, S. Tamulevičius, G. Laukaitis, S. Lindroos, M. Leskelä, V. Snitka, Growth of PbS thin films on silicon substrate by SILAR technique. Thin Solid Films 403, 457–461 (2002)Google Scholar
  45. 45.
    J. Seo, S.J. Kim, W.J. Kim, R. Singh, M. Samoc, A.N. Cartwright, P.N. Prasad, Enhancement of the photovoltaic performance in PbS nanocrystal: P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 20, 095202 (2009)Google Scholar
  46. 46.
    J. Tang, K. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011)Google Scholar
  47. 47.
    X. Lan, J. Bai, S. Masala, S.M. Thon, Y. Ren, I.J. Kramer, S. Hoogland, A. Simchi, G.I. Koleilat, D. Paz-Soldan, Z. Ning, A.J. Labelle, J.Y. Kim, G. Jabbour, E.H. Sargent, Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25, 1769–1773 (2013)Google Scholar
  48. 48.
    Neil P. Dasgupta, HeeJoon Jung, Orlando Trejo, Matthew T. McDowell, Aaron Hryciw, Mark Brongersma, Robert Sinclair, Fritz B. Prinz, Layer deposition of lead sulfide quantum dots on nanowire surfaces. Nano Lett. 11, 934 (2011)Google Scholar
  49. 49.
    K. Trabelsi, A. Hajjaji, M. Gaidi, B. Bessais, M.A. El Khakani, Enhancing the photoelectrochemical response of TiO2 nanotubes through their nanodecoration by pulsed-laser-deposited Ag nanoparticles. J. Appl. Phys. 122, 064503 (2017)Google Scholar
  50. 50.
    Donghun Kim, Dong-Ho Kim, Joo-Hyoung Lee, Jeffrey C. Grossman, Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys. Rev. Lett. 110, 196802 (2013)Google Scholar
  51. 51.
    A. Guinier, Théorie et Technique de la Radiocristallographie (Dunod, Paris, 1964)Google Scholar
  52. 52.
    I. Ka, Doctoral dissertation, Université du Québec, Institut national de la recherche scientifique. (2015)Google Scholar
  53. 53.
    Iwan Moreels, Karel Lambert, Dries Smeets, David De Muynck, Tom Nollet, José C. Martins, Frank Vanhaecke, André Vantomme, Christophe Delerue, Guy Allan, Zeger Hens, Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009)Google Scholar
  54. 54.
    Inuk Kang, Frank W. Wise, Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. 14, 1632–1646 (1997)Google Scholar
  55. 55.
    P. Kubelka, F. Munk, Zeit. Für Tekn. Physik 12, 593–601 (1931)Google Scholar
  56. 56.
    A. Thibert, F. Andrew Frame, E. Busby, M.A. Holmes, F.E. Osterloh, D.S. Larsen, Sequestering high-energy electrons to facilitate photocatalytic hydrogen generation in CdSe/CdS nanocrystals. J. Phys. Chem. Lett. 2, 2688–2694 (2011)Google Scholar
  57. 57.
    X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)Google Scholar
  58. 58.
    S.U. Khan, M. Al-Shahry, W.B. Jr, Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut National de la Recherche ScientifiqueINRS-Énergie, Matériaux et TélécommunicationsVarennesCanada
  2. 2.Laboratoire de PhotovoltaïqueCentre de Recherches et des Technologies de l’EnergieHammam-LifTunisia
  3. 3.Laboratoire de Microscopie ElectroniqueFaculté des Sciences de BizerteBizerteTunisia
  4. 4.Laboratory of Nanomaterials and Systems for Renewable EnergyCentre de Recherches et des Technologies de l’EnergieHammam-LifTunisia
  5. 5.Center of Advanced Materials Research, Research Institute of Sciences and EngineeringUniversity of SharjahSharjahUAE

Personalised recommendations