Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20687–20695 | Cite as

Improvement of UV photodetector properties of reactively sputtered TiO2−x films through vacuum annealing

  • Y. Ashok Kumar ReddyEmail author
  • B. Ajitha
  • Maddaka Reddeppa
  • Adem Sreedhar
Article
  • 35 Downloads

Abstract

We present the influence of vacuum annealing on RF magnetron-sputtered TiO2−x thin films grown at various oxygen partial pressures (\(p_{{{\text{O}}_{2} }}\)) of 2.0%, 4.0% and 6.0% to enhance the ultra-violet (UV) photodetector performance. Apart from the film deposited at 2.0% of \(p_{{{\text{O}}_{2} }}\), all the as-grown TiO2−x films show an amorphous nature, whereas thermally annealed TiO2−x films at 400 °C show the rutile phase. As revealed by the linear current–voltage characteristics, the ohmic-contact behavior was observed between the TiO2−x layer and the electrode material. Benefiting from the above features, the photocurrent was significantly increased at 4.0% of \(p_{{{\text{O}}_{2} }}\) due to the increase of oxygen vacancies and the suppression of electron–hole recombination. As a result, thermally annealed TiO2−x films are very useful for next-generation UV-photodetectors even at a lower power density of 1.72 mW/cm2. Therefore, the merits of the above findings present a promising strategy to enhance the UV photoresponse of thermally annealed TiO2−x films by optimizing the \(p_{{{\text{O}}_{2} }}\) at 4.0%.

Notes

Acknowledgements

One of the authors, Dr. Y. Ashok Kumar Reddy, acknowledges the Department of Science and Technology (DST), New Delhi, India, for the award of DST-Inspire Faculty (DST/INSPIRE//04/2017/002531).

References

  1. 1.
    C. Xie, X.-T. Lu, X.-W. Tong, Z.-X. Zhang, F.-X. Liang, L. Liang, L.B. Luo, Y.C. Wu, Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater. 29, 1806006 (2019)CrossRefGoogle Scholar
  2. 2.
    P.V.K. Yadav, Y.A.K. Reddy, B. Ajitha, V.R. Minnam Reddy, Oxygen partial pressure dependent UV photodetector performance of WO3 sputtered thin films. J. Alloys Compd. (2019).  https://doi.org/10.1016/j.jallcom.2019.152565 CrossRefGoogle Scholar
  3. 3.
    Y.R. Xie, L. Wei, Q.H. Li, Y.X. Chen, S.S. Yan, J. Jiao, G.L. Liu, L.M. Mei, High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays. Nanotechnology 25, 075202 (2014)CrossRefGoogle Scholar
  4. 4.
    Y.A.K. Reddy, Y.B. Shin, I.-K. Kang, H.C. Lee, P.S. Reddy, Enhanced bolometric properties of TiO2−x thin films by thermal annealing. Appl. Phys. Lett. 107, 023503 (2015)CrossRefGoogle Scholar
  5. 5.
    F. Hossein-Babaei, M.M. Lajvardi, N. Alaei-Sheini, The energy barrier at noble metal/TiO2 junctions. Appl. Phys. Lett. 106, 083503 (2015)CrossRefGoogle Scholar
  6. 6.
    Du Y-e, Q. Feng, C. Chen, Y. Tanaka, X. Yang, Photocatalytic and dye-sensitized solar cell performances of {010}-faceted and [111]-faceted anatase TiO2 nanocrystals synthesized from tetratitanate nanoribbons. ACS Appl. Mater. Interfaces. 6, 16007–16019 (2014)CrossRefGoogle Scholar
  7. 7.
    F. Zheng, Z. Zhu, Preparation of the Au@TiO2 nanofibers by one-step electrospinning for the composite photoanode of dye-sensitized solar cells. Mater. Chem. Phys. 208, 35–40 (2018)CrossRefGoogle Scholar
  8. 8.
    S.S. Mali, C.S. Shim, H. Kim, P.S. Patil, C.K. Hong, In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale 8, 2664–2677 (2016)CrossRefGoogle Scholar
  9. 9.
    Q. Wang, W. Bi, J. Miao, M. Lu, D. Zhang, Y. Chen, H. Yang, Preparation and electrochemical properties of graphene-supported Si-TiO2 nanospheres as anode material for Li-ion batteries. Surf. Interface Anal. 50, 488–495 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Tong, M. Zeng, J. Li, F. Li, UV-assisted synthesis of surface modified mesoporous TiO2/G microspheres and its electrochemical performances in lithium ion batteries. Appl. Surf. Sci. 392, 897–903 (2017)CrossRefGoogle Scholar
  11. 11.
    T.D. Deepa, M. Subhalaxmi, S.V. Nair, A.S. Nair, A.K. Rai, Surfactant-assisted synthesis of porous TiO2 nanofibers as an anode material for secondary lithium ion batteries. Sustain. Energy Fuels 1, 138–144 (2017)CrossRefGoogle Scholar
  12. 12.
    Z.-G. Zhang, H. Liu, X.-X. Wang, J. Zhang, M. Yu, S. Ramakrishna, Y.-Z. Long, One-step low temperature hydrothermal synthesis of flexible TiO2/PVDF@MoS2 core–shell heterostructured fibers for visible-light-driven photocatalysis and self-cleaning. Nanomaterials 9, 431 (2019)CrossRefGoogle Scholar
  13. 13.
    X. Zhou, S. Yu, S. Jiao, Z. Lv, E. Liu, Y. Zhao, N. Cao, Fabrication of superhydrophobic TiO2 quadrangular nanorod film with self-cleaning, anti-icing properties. Ceram. Int. 45, 11508–11516 (2019)CrossRefGoogle Scholar
  14. 14.
    Y.A.K. Reddy, B. Ajitha, A. Sreedhar, E. Varrla, Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films. Appl. Surf. Sci. 494, 575–582 (2019)CrossRefGoogle Scholar
  15. 15.
    C. Ling, T. Guo, L. Zhao, T. Zhang, Z. Hou, Q. Xue, TiO2@TiO2−xHx core-shell nanoparticle film/Si heterojunction for ultrahigh detectivity and sensitivity broadband photodetector. Nanotechnology 30, 415203 (2019)CrossRefGoogle Scholar
  16. 16.
    Z. Liu, F. Li, S. Li, C. Hu, W. Wang, F. Wang, F. Lin, H. Wang, Fabrication of UV photodetector on TiO2/diamond film. Sci. Rep. 5, 14420 (2015)CrossRefGoogle Scholar
  17. 17.
    P.-N. Ni, C.-X. Shan, S.-P. Wang, B.-H. Li, Z.-Z. Zhang, D.-X. Zhao, L. Liu, D.-Z. Shen, Enhanced responsivity of highly spectrum-selective ultraviolet photodetectors. J. Phys. Chem. C 116, 1350–1353 (2012)CrossRefGoogle Scholar
  18. 18.
    E.S. Ates, S. Kucukyildiz, H.E. Unalan, Zinc oxide nanowire photodetectors with single-walled carbon nanotube thin-film electrodes. ACS Appl. Mater. Interfaces. 4, 5142–5146 (2012)CrossRefGoogle Scholar
  19. 19.
    K.M. Chahrour, F.K. Yam, R. Abdalrheem, A high-performance UV photodetector of anodic rutile TiO2 nanotube arrays. Mater. Lett. 248, 161–164 (2019)CrossRefGoogle Scholar
  20. 20.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Xie, H. Huang, W. Yang, Z. Wu, Low dark current metal–semiconductor–metal ultraviolet photodetectors based on sol–gel-derived TiO2 films. J. Appl. Phys. 109, 023114 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Sreedhar, I.N. Reddy, J.H. Kwon, J. Yi, Y. Sohn, J.S. Gwag, J.-S. Noh, Charge carrier generation and control on plasmonic Au clusters functionalized TiO2 thin films for enhanced visible light water splitting activity. Ceram. Int. 44, 18978–18986 (2018)CrossRefGoogle Scholar
  23. 23.
    R. Lahiri, A. Mondal, Improved capacitive memory of Er:TiO2 TF based MOS device. J. Alloys Compd. 792, 679–683 (2019)CrossRefGoogle Scholar
  24. 24.
    Y. Suda, H. Kawasaki, T. Ueda, T. Ohshima, Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture. Thin Solid Films 475, 337–341 (2005)CrossRefGoogle Scholar
  25. 25.
    S.H. Kang, J.W. Lim, H.S. Kim, Y.H. Chung, Y.E. Sung, Photo and electrochemical characteristics dependent on the phase ratio of nanocolumnar structured TiO2 films by RF magnetron sputtering technique. Chem. Mater. 21, 2777–2788 (2009)CrossRefGoogle Scholar
  26. 26.
    L. Sang, M. Liao, M. Sumiya, A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to 1D nanostructures. Sensors 13, 10482–10518 (2013)CrossRefGoogle Scholar
  27. 27.
    Y.A.K. Reddy, I.-K. Kang, Y.B. Shin, H.C. Lee, Bolometric properties of reactively sputtered TiO2−x films for thermal infrared image sensors. J. Phys. D. 48, 355104 (2015)CrossRefGoogle Scholar
  28. 28.
    J.B. Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Annealing effects on microstructural and optical properties of nanostructured-TiO2 thin films prepared by sol–gel technique. Curr. Appl. Phys. 12, 422–428 (2012)CrossRefGoogle Scholar
  29. 29.
    L. Lu, M. Guo, S. Thornley, X. Han, J. Hu, M.J. Thwaites, G. Shao, Remote plasma sputtering deposited Nb-doped TiO2 with remarkable transparent conductivity. Sol. Energy Mater. Sol. Cells 149, 310–319 (2016)CrossRefGoogle Scholar
  30. 30.
    Y.A.K. Reddy, Y.B. Shin, I.-K. Kang, H.C. Lee, Effect of sputtering pressure on microstructure and bolometric properties of Nb:TiO2−x films for infrared image sensor applications. J. Appl. Phys. 119, 044504 (2016)CrossRefGoogle Scholar
  31. 31.
    N. Laidani, P. Cheyssac, J. Perriere, R. Bartali, G. Gottardi, I. Luciu, V. Micheli, Intrinsic defects and their influence on the chemical and optical properties of TiO2−x films. J. Phys. D. 43, 485402 (2010)CrossRefGoogle Scholar
  32. 32.
    Y. Leprince-Wang, Study of the initial stages of TiO growth on Si wafers by XPS. Surf. Coat. Technol. 150, 257–262 (2002)CrossRefGoogle Scholar
  33. 33.
    D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798–801 (2013)CrossRefGoogle Scholar
  34. 34.
    Y. Gao, J. Xu, S. Shi, H. Dong, Y. Cheng, C. Wei, X. Zhang, S. Yin, L. Li, TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse. ACS Appl. Mater. Interfaces. 10, 11269–11279 (2018)CrossRefGoogle Scholar
  35. 35.
    T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, D. Golberg, Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv. Funct. Mater. 20, 4233–4248 (2010)CrossRefGoogle Scholar
  36. 36.
    J.D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez, J.R. Morante, The effects of electron–hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology 19, 465501 (2008)CrossRefGoogle Scholar
  37. 37.
    S.A. Ansari, M.H. Cho, Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications. Sci. Rep. 6, 25405 (2016)CrossRefGoogle Scholar
  38. 38.
    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)CrossRefGoogle Scholar
  39. 39.
    J.M. Wu, W.E. Chang, Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Appl. Mater. Interfaces. 6, 14286–14292 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Information Technology, Design and Manufacturing, KancheepuramChennaiIndia
  2. 2.Department of Nano-Structured Materials ResearchNational Nano-Fab Center (NNFC) at KAISTDaejeonRepublic of Korea
  3. 3.Department of PhysicsChungnam National UniversityDaejeonRepublic of Korea
  4. 4.Department of Nano-PhysicsGachon UniversitySeongnam-siRepublic of Korea

Personalised recommendations