Structure refinement and impedance analysis of Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramics sintered in air and nitrogen

  • Ku Noor Dhaniah Ku Muhsen
  • Rozana Aina Maulat OsmanEmail author
  • Mohd Sobri Idris


Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramics prepared in air (BCZTair) and nitrogen (BCZTN2) exhibit significant changes on the unit cell parameters and volume. BCZTair ceramic has higher dielectric constant, εr = 4805, than BCZTN2 ceramic, εr = 4771. BCZTN2 that was sintered in N2 gas was expected to contain oxygen vacancies which might create a high-resistivity blocking layer at the grain boundaries which give similar behaviour as ferroelectric polarization disappearance hence reduce the dielectric constant. BCZTair deviated from the Curie–Weiss law with ΔT = 17 which is higher than BCZTN2 with ΔT = 14 represents a characteristic of relaxor ferroelectric behaviour with diffused characteristic. The value of γ for both samples represents normal ferroelectrics even the γ for BCZTN2 was slightly higher with γ = 1.6334 than BCZTair with γ = 1.6146.


Supplementary material

10854_2019_2433_MOESM1_ESM.docx (267 kb)
Supplementary material 1 (DOCX 267 kb)


  1. 1.
    M. McQuarrie, F.W. Behnke, Structural and dielectric studies in the system (Ba, Ca)(Ti, Zr)O3. J Am Ceram. Soc. 37, 539–543 (1954)CrossRefGoogle Scholar
  2. 2.
    W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Structural and dielectric properties in the (Ba1−xCax)(Ti0.95Zr0.05)O3 ceramics. Curr. Appl. Phys. 12(3), 748–751 (2012)CrossRefGoogle Scholar
  3. 3.
    W. Bai, D. Chen, J. Zhang, J. Zhong, M. Ding, B. Shen, J. Zhai, Z. Ji, Phase transition behavior and enhanced electromechanical properties in Ba0.85Ca0.15)(ZrxTi1−x)O3 lead-free piezoceramics. Ceram. Int. 42(2), 3598–3608 (2016)CrossRefGoogle Scholar
  4. 4.
    G. Singh, V.S. Tiwari, P.K. Gupta, Evaluating the polymorphic phase transition in calcium-doped Ba (Zr0.05Ti0.95)O3: a lead-free piezoelectric ceramic. J. Appl. Crystallogr. 46(2), 324–331 (2013)CrossRefGoogle Scholar
  5. 5.
    W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Bai, A. Matousek, P. Tofel, V. Bijalwan, B. Nan, H. Hughes, T.W. Button, (Ba, Ca)(Zr, Ti)O3 lead-free piezoelectric ceramics—the critical role of processing on properties. J. Eur. Ceram. Soc. 35(13), 3445–3456 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Jiang, Q. Lin, D. Lin, Q. Zheng, X. Fan, X. Wu, H. Sun, Y. Wan, L. Wu, Effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. J. Mater. Sci. 48(3), 1035–1041 (2013)CrossRefGoogle Scholar
  8. 8.
    H.I. Humburg, M. Acosta, W. Jo, K.G. Webber, J. Rödel, Stress-dependent electromechanical properties of doped (Ba1−xCax)(ZryTi1−y)O3. J. Eur. Ceram. Soc. 35(4), 1209–1217 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Di Loreto, A. Frattini, M.G. Stachiotti, Influence of post-calcination grinding on the properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 lead-free piezoceramics. Mater. Lett. 191, 69–72 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Msouni, A. Tachafine, M. El Aatmani, D. Fasquelle, J.C. Carru, M. El Hammioui, M. Rguiti, A. Zegzouti, A. Outzourhit, M. Daoud, Structural, dielectric and piezoelectric study of Ca-, Zr-modified BaTiO3 lead-free ceramics. Bull. Mater. Sci. 40(5), 925–931 (2017)CrossRefGoogle Scholar
  11. 11.
    P. Hansen, D. Hennings, H. Schreinemacher, High-K dielectric ceramics from donor/acceptor-codoped (Ba1−xCax)(Ti1−yZry)O3 (BCTZ). J. Am. Ceram. Soc. 81(5), 1369–1373 (1998)CrossRefGoogle Scholar
  12. 12.
    S.W. Zhang, H. Zhang, B.P. Zhang, G. Zhao, Dielectric and piezoelectric properties of Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere. J. Eur. Ceram. Soc. 29(15), 3235–3242 (2009)CrossRefGoogle Scholar
  13. 13.
    Q. Feng, C.J. McConville, D.D. Edwards, D.E. McCauley, M. Chu, Effect of oxygen partial pressure on the dielectric properties and microstructures of cofired base-metal electrode multilayer ceramic capacitors. J. Am. Ceram. Soc. 89(3), 894–901 (2006)CrossRefGoogle Scholar
  14. 14.
    H. Kishi, Y. Mizuno, H. Chazono, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42(1R), 1 (2003)CrossRefGoogle Scholar
  15. 15.
    T.A. Jain, K.Z. Fung, J. Chan, Effect of the A/B ratio on the microstructures and electrical properties of (Ba0.95±xCa0.05) (Ti0.82Zr0.18) O3 for multilayer ceramic capacitors with nickel electrodes. J. Alloys Compd. 468(1–2), 370–374 (2009)CrossRefGoogle Scholar
  16. 16.
    Y.K. Choi, T. Hoshina, H. Takeda, T. Tsurumi, Effects of Ca and Zr additions and stoichiometry on the electrical properties of barium titanate-based ceramics. J. Ceram. Soc. Jpn. 118(1382), 881–886 (2010)CrossRefGoogle Scholar
  17. 17.
    C. Voisin, S. Guillemet-Fritsch, P. Dufour, C. Tenailleau, H. Han, J.C. Nino, Influence of oxygen substoichiometry on the dielectric properties of BaTiO3-δ nanoceramics obtained by spark plasma sintering. Int. J. Appl. Ceram. Technol 10(s1), E122–E133 (2013)CrossRefGoogle Scholar
  18. 18.
    Z. Wang, M. Cao, Z. Yao, Q. Zhang, Z. Song, W. Hu, Q. Xu, H. Hao, H. Liu, Z. Yu, Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere. J. Eur. Ceram. Soc. 34(7), 1755–1760 (2014)CrossRefGoogle Scholar
  19. 19.
    Y.K. Choi, T. Hoshina, H. Takeda, J.M. Oh, T. Tsurumi, The effect of oxygen vacancies on the dielectric responses of BaTiO3 based ceramics in the ultra-wide frequency range, in Key Engineering Materials, 485th edn., ed. by A.S. Herrmann (Trans Tech Publications, Zürich, 2011), pp. 15–18Google Scholar
  20. 20.
    A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair, Novel high capacitance materials:-BaTiO3: La and CaCu3Ti4O12. J. Eur. Ceram. Soc. 24(6), 1439–1448 (2004)CrossRefGoogle Scholar
  21. 21.
    R.A. Osman, N. Maso, A.R. West, Bismuth zinc niobate pyrochlore, a relaxor-like non-ferroelectric. J. Am. Ceram. Soc. 95(1), 296–302 (2012)CrossRefGoogle Scholar
  22. 22.
    R.A. Osman, M.S. Idris, Electrical properties of fresnoite Ba2TiSi2O8 using impedance spectroscopy, in Advanced Materials Research, 795th edn., ed. by A.S. Herrmann (Trans Tech Publications, Zürich, 2013), pp. 640–643Google Scholar
  23. 23.
    R.A. Osman, A.R. West, Electrical characterization and equivalent circuit analysis of (Bi1.5Zn0.5)(Nb0.5Ti1.5) O7 Pyrochlore, a relaxor ceramic. J. Appl. Phys. 109(7), 074106 (2011)CrossRefGoogle Scholar
  24. 24.
    D.C. Sinclair, Characterisation of electro-materials using ac impedance spectroscopy. Boletín de la Sociedad Española de Cerámica y Vidrio 34(2), 55–65 (1995)Google Scholar
  25. 25.
    A.R. West, D.C. Sinclair, N. Hirose, Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J. Electroceram. 1(1), 65–71 (1997)CrossRefGoogle Scholar
  26. 26.
    K.N.D.K. Muhsen, R.A.M. Osman, M.S. Idris, Giant anomalous dielectric behaviour of BaSnO3 at high temperature. J. Mater. Sci. 30, 1–10 (2019)Google Scholar
  27. 27.
    A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (1994)Google Scholar
  28. 28.
    B.H. Toby, EXPGUI: a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001). CrossRefGoogle Scholar
  29. 29.
    L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999)CrossRefGoogle Scholar
  30. 30.
    M.S. Idris, R.A. Osman, Structure refinement strategy of Li-based complex oxides using GSAS-EXPGUI software package, in Advanced Materials Research, 795th edn., ed. by A.S. Herrmann (Trans Tech Publications, Zürich, 2013), pp. 479–482Google Scholar
  31. 31.
    T.Q. Tan, R.A.M. Osman, M.V. Reddy, Z. Jamal, M.S. Idris, Structural and electrical studies of olivine LiNi1−x (Co0.5Mn0.5)xPO4 (0 ≤ x ≤ 1) at high temperature. Ionics 24(12), 3733–3744 (2018)CrossRefGoogle Scholar
  32. 32.
    T.Q. Tan, R.A.M. Osman, Z.A.Z. Jamal, M.V. Reddy, M.S. Idris, Structure and electrical properties of solid solution Li[Ni0.5Mn0.5]1−xCoxPO4 (1 ≥ x ≥ 0). Mater. Sci. Eng. B 241, 55–65 (2019)CrossRefGoogle Scholar
  33. 33.
    T.Q. Tan, R.A.M. Osman, M.V. Reddy, S.F. Khor, M.S. Idris. Structure and electrochemical properties of Zn and Co dual-doped (Li2Co1−xZnxMn3O8) as cathode material for rechargeable lithium-ion batteries. in EPJ Web of Conferences vol. 162,(EDP Sciences, 2017) p. 01053Google Scholar
  34. 34.
    Y. Yao, C. Zhou, D. Lv, D. Wang, H. Wu, Y. Yang, X. Ren, Large piezoelectricity and dielectric permittivity in BaTiO3−xBaSnO3 system: the role of phase coexisting. EPL (Europhys. Lett.) 98(2), 27008 (2012)CrossRefGoogle Scholar
  35. 35.
    V.S. Puli, A. Kumar, D.B. Chrisey, M. Tomozawa, J.F. Scott, R.S. Katiyar, Barium zirconate-titanate/barium calcium-titanate ceramics via sol–gel process: novel high-energy-density capacitors. J. Phys. D 44(39), 395403 (2011)CrossRefGoogle Scholar
  36. 36.
    C.L. Li, Z.H. Chen, Y.L. Zhou, D.F. Cui, Effect of oxygen content on the dielectric and ferroelectric properties of laser-deposited BaTiO3 thin films. J. Phys. 13(22), 5261 (2001)Google Scholar
  37. 37.
    Q. Lin, D. Wang, S. Li, Strong effect of oxygen partial pressure on electrical properties of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 thin films. J. Am. Ceram. Soc. 98(7), 2094–2098 (2015)CrossRefGoogle Scholar
  38. 38.
    M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 41(9), 11436–11444 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Mittal, R. Laishram, K.C. Singh, Improved electrical properties of lead-free neodymium doped Ba0.85Ca0.15Zr0.1Ti0.9O3 piezoceramics. Mater. Res. Bull. 105, 253–259 (2018)CrossRefGoogle Scholar
  40. 40.
    I. Coondoo, N. Panwar, D. Alikin, I. Bdikin, S.S. Islam, A. Turygin, V.Y. Shur, A.L. Kholkin, A comparative study of structural and electrical properties in lead-free BCZT ceramics: influence of the synthesis method. Acta Mater. 155, 331–342 (2018)CrossRefGoogle Scholar
  41. 41.
    Y. Chang, Z. Yang, Y. Hou, Z. Liu, Z. Wang, Effects of Li content on the phase structure and electrical properties of lead-free (K0.46−x∕2Na0.54−x∕2Lix)(Nb0.76Ta0.20Sb0.04)O3 ceramics. Appl. Phys. Lett. 90(23), 232905 (2007)CrossRefGoogle Scholar
  42. 42.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, vol. 3 (Academic, New York, 1971), p. 237Google Scholar
  43. 43.
    H. Kaddoussi, A. Lahmar, Y. Gagou, B. Manoun, J.N. Chotard, J.L. Dellis, Z. Kutnjak, H. Khemakhem, B. Elouadi, M. El Marssi, Sequence of structural transitions and electrocaloric properties in (Ba1−xCax)(Zr0.1Ti0.9)O3 ceramics. J. Alloy. Compd. 713, 164–179 (2017)CrossRefGoogle Scholar
  44. 44.
    X. Chao, J. Wang, L. Wei, R. Gou, Z. Yang, Electrical properties and low temperature sintering of BiAlO3 doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J. Mater. Sci. 26(10), 7331–7340 (2015)Google Scholar
  45. 45.
    Y. Chang, Z. Yang, L. Wei, Microstructure, density, and dielectric properties of lead-free (K0.44Na0. 52Li0. 04)(Nb0. 96−xTaxSb0. 04)O3 piezoelectric ceramics. J. Am. Ceram. Soc. 90(5), 1656–1658 (2007)CrossRefGoogle Scholar
  46. 46.
    J. Tao, Z. Yi, Y. Liu, M. Zhang, J. Zhai, Dielectric tunability, dielectric relaxation, and impedance spectroscopic studies on (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics. J. Am. Ceram. Soc. 96(6), 1847–1851 (2013)CrossRefGoogle Scholar
  47. 47.
    A.R. West, Solid State Chemistry and Its Applications (Wiley, New York, 2014), p. 438Google Scholar
  48. 48.
    Y. Lai, Y. Zeng, X. Tang, H. Zhang, J. Han, Z. Huang, H. Su, Effects of CaO–B2O3–SiO2 glass additive on the microstructure and electrical properties of BCZT lead-free ceramic. Ceram. Int. 42(11), 12694–12700 (2016)CrossRefGoogle Scholar
  49. 49.
    K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44(1), 55–61 (1982)CrossRefGoogle Scholar
  50. 50.
    C. Chen, H. Zhuang, X. Zhu, D. Zhang, K. Zhou, H. Yan, Effect of Ca substitution sites on dielectric properties and relaxor behavior of Ca doped barium strontium titanate ceramics. J. Mater. Sci. 26(4), 2486–2492 (2015)Google Scholar
  51. 51.
    O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb (Fe1∕ 2Nb1∕ 2)O3 ceramics obtained by different precursors, part I structural and thermo-electrical characterization. J. Appl. Phys. 97(8), 084107 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Microelectronic EngineeringUniversiti Malaysia PerlisArauMalaysia
  2. 2.School of Materials EngineeringUniversiti Malaysia PerlisArauMalaysia
  3. 3.Center of Excellence for Frontier Materials ResearchKangarMalaysia

Personalised recommendations