Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20654–20664 | Cite as

Enhancing the dielectric properties of (Ba0.85Ca0.15)(SnxZr0.10−xTi0.90)O3 lead-free ceramics by stannum substitution

  • Ku Noor Dhaniah Ku Muhsen
  • Rozana Aina Maulat OsmanEmail author
  • Mohd Sobri Idris
  • Mohammad Hafizuddin Hj Jumali
  • Nor Huwaida Binti Jamil
Article
  • 68 Downloads

Abstract

A small amount of Sn4+ content has a great influence in the lowering the Curie temperature (Tc), enhancing the dielectric properties and reducing the piezoelectric performance of (Ba0.85Ca0.15)(SnxZr0.1−xTi0.90)O3 (x = 0, 0.025, 0.05, 0.075, 0.10) ceramics, and this reaction has been systematically studied. The samples were synthesized by using the conventional solid-state route and then sintered at 1450 °C. They were characterized by X-ray diffraction analysis, ac impedance spectroscopy, scanning electron microscopy, energy dispersive X-ray and piezoelectric constant measurements. All the samples exhibited a tetragonal structure. The results showed that the dielectric properties increase as the Sn content increases, and Tc was lowered from 95 to 59 °C. The Tc shifted to a lower temperature due to the smaller ionic radii of Sn4+ being replaced by Zr4+ at B-sites and a decrease in the Ti–O bonds, thus weakening its interaction within the TiO6 octahedral. It was discovered that the tolerance factor becomes larger, and thus the deviation of the Sn4+ ions at B-sites are much easier, with enough space and enhanced ferroelectricity and dielectric properties. However, its piezoelectric properties were decreased since the tetragonality of the samples decreased with the addition of Sn4+ contents. The c-axis becomes shorter and reduces the dipole moment of the TiO6 octahedral. Moreover, the activation energies for Sn-doped BCZT ceramics associated with the ionization of oxygen vacancies create difficulties in electric domain rotation, thus reducing the polarizability of the samples.

Notes

Acknowledgement

This work was financially supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme 2018 (FRGS Grant No.: FRGS/1/2018/STG07/UNIMAP/02/4).

Author contributions

KNDKM conducted the experimental work and wrote the manuscript, RAMO interpreted the data and designed the experimental work, MSI interpreted and analyzed the XRD data, MHHJ interpreted the piezoelectric measurement data and NHBJ supervised the experimental work using the piezoelectric tester.

References

  1. 1.
    P. Zheng, K.X. Song, H.B. Qin, L. Zheng, L.M. Zheng, Piezoelectric activities and domain patterns of orthorhombic Ba(Zr, Ti)O3 ceramics. Curr. Appl. Phys. 13(6), 1064–1068 (2013)CrossRefGoogle Scholar
  2. 2.
    F.A. Ismail, R.A.M. Osman, M.S. Idris, N.A.M. Ahmad Hambali, Structure and electrical characteristics of BaTiO3 and Ba0.99Er0.01TiO3 Ceramics. Solid State Phenom. 280, 127–133 (2018)CrossRefGoogle Scholar
  3. 3.
    W. Liu, J. Wang, X. Ke, S. Li, Large piezoelectric performance of Sn doped BaTiO3 ceramics deviating from quadruple point. J. Alloys Compd. 712, 1–6 (2017)CrossRefGoogle Scholar
  4. 4.
    W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Dielectric and piezoelectric properties of Ba(ZrxTi1−x)O3 lead-free ceramics. Braz. J. Phys. 40(3), 353–356 (2010)CrossRefGoogle Scholar
  5. 5.
    W.F. Liu, X.B. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, J. Glaum, C. Groh, M.C. Ehmke, J.E. Blendell, K.J. Bowman, M.J. Hoffman, Correlation between piezoelectric properties and phase coexistence in (Ba, Ca)(Ti, Zr)O3 ceramics. J. Am. Ceram. Soc. 97(9), 2885–2891 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Gao, X. Hu, Y. Wang, Y. Liu, L. Zhang, X. Ke, L. Zhong, H. Zhao, X. Ren, Understanding the mechanism of large dielectric response in Pb-free (1−x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. Acta Mater. 125, 177–186 (2017)CrossRefGoogle Scholar
  8. 8.
    C.X. Li, B. Yang, S.T. Zhang, R. Zhang, W.W. Cao, Effects of sintering temperature and poling conditions on the electrical properties of Ba0.70Ca0.30TiO3 diphasic piezoelectric ceramics. Ceram. Int. 39(3), 2967–2973 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Wang, J. Liu, P. Liang, Z. Yang, Higher curie temperature and enhanced piezoelectrical properties in (Ba0.85Ca0.15−xPbx)(Zr0.1Ti0.90− ySny)O3 ceramics. J. Electron. Mater. 47(10), 6121–6127 (2018)CrossRefGoogle Scholar
  10. 10.
    F. Benabdallah, C. Elissalde, U.C.C. Seu, D. Michau, A. Poulon-Quintin, M. Gayot, P. Garreta, H. Khemakhem, M. Maglione, Structure–microstructure–property relationships in lead-free BCTZ piezoceramics processed by conventional sintering and spark plasma sintering. J. Eur. Ceram. Soc. 35(15), 4153–4161 (2015)CrossRefGoogle Scholar
  11. 11.
    K.N.D.K. Muhsen, R.A.M. Osman, M.S. Idris, Giant anomalous dielectric behaviour of BaSnO 3 at high temperature. J. Mater. Sci.: Mater. Electron. 30(8), 7514–7523 (2019)Google Scholar
  12. 12.
    M.S. Yoon, S.C. Ur, Effects of A-site Ca and B-site Zr substitution on dielectric properties and microstructure in tin-doped BaTiO3–CaTiO3 composites. Ceram. Int. 34(8), 1941–1948 (2008)CrossRefGoogle Scholar
  13. 13.
    H. Wang, J. Wu, Phase transition, microstructure, and electrical properties of Ca, Zr, and Sn-modified BaTiO3 lead-free ceramics. J. Alloys Compd. 615, 969–974 (2014)CrossRefGoogle Scholar
  14. 14.
    B.G. Baraskar, P.S. Kadhane, T.C. Darvade, A.R. James, R.C. Kambale, BaTiO3-based lead-free electroceramics with their ferroelectric and piezoelectric properties tuned by Ca2+, Sn4+ and Zr4+ substitution useful for electrostrictive device application, in Ferroelectrics and their applications, ed. H. Irzaman, R.P. Jenie (IntechOpen, London, 2018)Google Scholar
  15. 15.
    S. Patel, P. Sharma, R. Vaish, Enhanced electrocaloric effect in Ba0.85Ca0.15Zr0.1Ti0.9–xSnxO3 ferroelectric ceramics. Phase Trans. 89(11), 1062–1073 (2016)CrossRefGoogle Scholar
  16. 16.
    B.A. Topas, V4: General profile and structure analysis software for powder diffraction data. User’s manual (Bruker AXS, Karlsruhe, 2008)Google Scholar
  17. 17.
    M.S. Idris, R.A.M. Osman, Structure refinement strategy of Li-based complex oxides using GSAS-EXPGUI software package. Adv. Mater. Res. 795, 479–482 (2013)CrossRefGoogle Scholar
  18. 18.
    T.Q. Tan, R.A.M. Osman, M.V. Reddy, Z.A.Z. Jamal, M.S. Idris, Structure and electrical studies of olivine LiNi1−x(Co0.5Mn0.5)xPO4 (0 < x < 1) at high temperature. Ionics 24, 3733–3744 (2017)CrossRefGoogle Scholar
  19. 19.
    T.Q. Tan, R.A.M. Osman, M.V. Reddy, Z.A.Z. Jamal, M.S. Idris, Structure and electrical properties of solid solution Li[Ni0.5Mn0.5]1−xCoxPO4 (1 ≥ x ≥ 0). Mater. Sci. Eng. B 241, 55–65 (2019)CrossRefGoogle Scholar
  20. 20.
    Y. Yao, C. Zhou, D. Lv, D. Wang, H. Wu, Y. Yang, X. Ren, Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: the role of phase coexisting. Europhys. Lett. 98(2), 27008 (2012)CrossRefGoogle Scholar
  21. 21.
    X. Chao, J. Wang, L. Wei, R. Gou, Z. Yang, Electrical properties and low temperature sintering of BiAlO3 doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 26(10), 7331–7340 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Zeng, Q. Liu, E. Cai, Y. Wang, A. Xue, S. Peng, S. Zhou, Y. Zhu, Relaxor phenomenon of (1−x)(Ba0.85Ca0.15)(Zr0.09Ti0.91)O3−xTa + 0.6 wt% Li2CO3 ceramics with high piezoelectric constant and Curie temperature. Ceram. Int. 44(9), 10677–10684 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Wu, D. Xiao, B. Wu, W. Wu, J. Zhu, Z. Yang, J. Wang, Sintering temperature-induced electrical properties of (Ba0.90Ca0.10)(Ti0.85Zr0.15)O3 lead-free ceramics. Mater. Res. Bull. 47(5), 1281–1284 (2012)CrossRefGoogle Scholar
  24. 24.
    J.C. Sczancoski, L.S. Cavalcante, T. Badapanda, S.K. Rout, S. Panigrahi, V.R. Mastelaro, J.A. Varela, M. Siu Li, E. Longo, Structure and optical properties of [Ba1–xY2x/3](Zr0.25Ti0.75)O3 powders. Solid State Sci. 12(7), 1160–1167 (2010)CrossRefGoogle Scholar
  25. 25.
    F. Guo, W. Cai, R. Gao, C. Fu, G. Chen, X. Deng, Z. Wang, Q. Zhang, Microstructure, Enhanced Relaxor-Like Behavior and Electric Properties of (Ba0.85Ca0.15)(Zr0.1− xHfxTi0.9)O3 Ceramics. J. Electron. Mater. 48(5), 3239–3247 (2019)CrossRefGoogle Scholar
  26. 26.
    H. Msouni, A. Tachafine, M. El Aatmani, D. Fasquelle, J.C. Carru, M. El Hammioui, M. Rguiti, A. Zegzouti, A. Outzourhit, M. Daoud, Structural, dielectric and piezoelectric study of Ca-, Zr-modified BaTiO3 lead-free ceramics. Bull. Mater. Sci. 40(5), 925–931 (2017)CrossRefGoogle Scholar
  27. 27.
    A.R. West, D.C. Sinclair, N. Hirose, Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J. Electroceram. 1(1), 65–71 (1997)CrossRefGoogle Scholar
  28. 28.
    M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 41(9), 11436–11444 (2015)CrossRefGoogle Scholar
  29. 29.
    H. Kaddoussi, A. Lahmar, Y. Gagou, B. Manoun, J.N. Chotard, J.L. Dellis, Z. Kutnjak, H. Khemakhem, B. Elouadi, M. El Marssi, Sequence of structural transitions and electrocaloric properties in (Ba1-xCax)(Zr0.1Ti0.9)O3 ceramics. J. Alloys Compd. 713, 164–179 (2017)CrossRefGoogle Scholar
  30. 30.
    P. Mishra, P. Kumar, Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT–BCT 50/50 ceramics. J. Alloys Compd. 545, 210–215 (2012)CrossRefGoogle Scholar
  31. 31.
    I. Coondoo, N. Panwar, D. Alikin, I. Bdikin, S.S. Islam, A. Turygin, V.Y. Shur, A.L. Kholkin, A comparative study of structural and electrical properties in lead-free BCZT ceramics: influence of the synthesis method. Acta Mater. 155, 331–342 (2018)CrossRefGoogle Scholar
  32. 32.
    D.J. Shin, J. Kim, J.H. Koh, Piezoelectric properties of (1−x) BZT−xBCT system for energy harvesting applications. J. Eur. Ceram. Soc. 38(13), 4395–4403 (2018)CrossRefGoogle Scholar
  33. 33.
    A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair, Novel high capacitance materials:-BaTiO3: La and CaCu3Ti4O12. J. Eur. Ceram. Soc. 24(6), 1439–1448 (2004)CrossRefGoogle Scholar
  34. 34.
    A.R. West, Solid state chemistry and its applications (Wiley, Chichester, 2014), p. 438Google Scholar
  35. 35.
    Y. Lai, Y. Zeng, X. Tang, H. Zhang, J. Han, Z. Huang, H. Su, Effects of CaO–B2O3–SiO2 glass additive on the microstructure and electrical properties of BCZT lead-free ceramic. Ceram. Int. 42(11), 12694–12700 (2016)CrossRefGoogle Scholar
  36. 36.
    K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44(1), 55–61 (1982)CrossRefGoogle Scholar
  37. 37.
    C. Chen, H. Zhuang, X. Zhu, D. Zhang, K. Zhou, H. Yan, Effect of Ca substitution sites on dielectric properties and relaxor behavior of Ca doped barium strontium titanate ceramics. J. Mater. Sci.: Mater. Electron. 26(4), 2486–2492 (2015)Google Scholar
  38. 38.
    K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He, Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 113, 190–201 (2019)CrossRefGoogle Scholar
  39. 39.
    N. Wang, B.P. Zhang, J. Ma, L. Zhao, J. Pei, Phase structure and electrical properties of Sn and Zr modified BaTiO3 lead-free ceramics. Ceram. Int. 43(1), 641–649 (2017)CrossRefGoogle Scholar
  40. 40.
    O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb (Fe1∕ 2Nb1∕ 2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97(8), 084107 (2005)CrossRefGoogle Scholar
  41. 41.
    Huang, X. Y., Gao, C. H., Zhu, Z. W., Pan, L., & Chen, Z. G. (2012, November). Influence of Co2O3 doped amount on the properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. In 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), IEEE, pp. 9–12Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Microelectronic EngineeringUniversiti Malaysia PerlisArauMalaysia
  2. 2.School of Materials EngineeringUniversiti Malaysia PerlisArauMalaysia
  3. 3.Center of Excellence for Frontier Materials ResearchKangarMalaysia
  4. 4.School of Applied Physics, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations