Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20574–20587 | Cite as

Silver (Ag) nanoparticle-decorated expanded graphite (EG) epoxy composite: evaluating thermal and electrical properties

  • Sagar Kumar NayakEmail author
  • Smita Mohanty
  • Sanjay K. Nayak
Article
  • 25 Downloads

Abstract

Synthesized expanded graphite (EG) was decorated with Ag nanoparticles using solid-state decomposition by a simple ‘mix and heat’ technique. The epoxy composite was fabricated by a stir casting method with an ultrasonic procedure in order to enhance the thermal conductivity (TC). The morphology of filler (EG–Ag) studied under X-ray diffraction (XRD) technique and scanning electron microscopy (SEM) confirms the attachment of Ag nanoparticles on EG surfaces. The TC of the composite containing 10 wt% of EG–Ag hybrid filler (EG–Ag(10)-Ep(90)) measured using guarded heat flow meter technique was found to be 2.52 W/mK, which is almost 13-fold enhancement as compared to the neat epoxy. The thermo-gravimetric analysis (TGA) of EG–Ag(10)-Ep(90) confirmed thermal stability which enhanced from 289 to 327 °C at 5% weight loss, in N2 atmosphere. The improvement in TC was ascribed to the synergistic effect of micro-nano (EG–Ag) hybrid filler, in which Ag nanoparticles acted as ‘spacer’ between EG threads by reducing interfacial Kapitza resistance as evidenced from fracture surface analysis. After attaining 3D percolation limit, the hybrid composite at 10% filler fraction (EG–Ag) entered the electrical conductivity of the semiconducting range which was enhanced by fourteen orders from neat epoxy.

Notes

Acknowledgements

This work is supported by the Board of Research Board in Nuclear Science (BRNS), Department of Atomic Energy (DAE), Government of India (Project No. 39/14/01/2018-BRNS/39001).

References

  1. 1.
    L.T. Drzal, H. Fukushima, Polym. Prepr. (USA) 42, 42 (2001)Google Scholar
  2. 2.
    Z. Wang, R. Qi, J. Wang, S. Qi, Ceram. Int. 41, 13541 (2015)CrossRefGoogle Scholar
  3. 3.
    L. Chen, P. Zhao, H. Xie, W. Yu, Compos. Sci. Technol. 125, 17 (2016)CrossRefGoogle Scholar
  4. 4.
    P.A. Khomyakov, G. Giovannetti, P.C. Rusu, G.V. Brocks, J. Van den Brink, P.J. Kelly, Phys. Rev. B 79, 195425 (2009)CrossRefGoogle Scholar
  5. 5.
    Q.J. Wang, J.G. Che, Phys. Rev. Lett. 103, 066802 (2009)CrossRefGoogle Scholar
  6. 6.
    S.K. Nayak, S. Mohanty, S.K. Nayak, SN Appl. Sci. 1, 337 (2019).  https://doi.org/10.1007/s42452-019-0346-2 CrossRefGoogle Scholar
  7. 7.
    R. Aradhana, S. Mohanty, S.K. Nayak, Compos. Sci. Technol. 169, 86 (2019)CrossRefGoogle Scholar
  8. 8.
    P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science 265, 1212 (1994)CrossRefGoogle Scholar
  9. 9.
    R. Kumar, S.K. Nayak, S. Sahoo, B.P. Panda, S. Mohanty, S.K. Nayak, J. Mater. Sci. 29, 16932 (2018)Google Scholar
  10. 10.
    R. Kumar, S. Mohanty, S.K. Nayak, SN Appl. Sci. 1, 180 (2019).  https://doi.org/10.1007/s42452-019-0200-6 CrossRefGoogle Scholar
  11. 11.
    N.K. Mahanta, M.R. Loos, I.M. Zlocozower, A.R. Abramson, J. Mater. Res. 30, 959 (2015)CrossRefGoogle Scholar
  12. 12.
    C.P. Wong, R.S. Bollampally, J. Appl. Polym. Sci. 74, 3396 (1999)CrossRefGoogle Scholar
  13. 13.
    P. Procter, J. Solc, I.E.E.E. Trans, Compon. Hybrids Manuf. Technol. 14, 708 (1991)CrossRefGoogle Scholar
  14. 14.
    N.H. Hirmizi, M.A. Bakar, W.L. Tan, N.H.H. Bakar, J. Ismail, C.H. See, J. Nanomater. 2012, 5 (2012).  https://doi.org/10.1155/2012/219073 CrossRefGoogle Scholar
  15. 15.
    T.T. Baby, S.J. Aravind, T. Arockiadoss, R.B. Rakhi, S. Ramaprabhu, Sens. Actuators B 145, 71 (2010)CrossRefGoogle Scholar
  16. 16.
    I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett. 10, 577 (2010)CrossRefGoogle Scholar
  17. 17.
    W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, G. Shi, J. Phys. Chem. C 114, 1822 (2010)CrossRefGoogle Scholar
  18. 18.
    H. Wu, J. Wang, X. Kang, C. Wang, D. Wang, J. Liu, I.A. Aksay, Y. Lin, Talanta 80, 403 (2009)CrossRefGoogle Scholar
  19. 19.
    Y. Lin, K.A. Watson, M.J. Fallbach, S. Ghose, J.G. Smith Jr., D.M. Delozier, W. Cao, R.E. Crooks, J.W. Connell, ACS Nano 3, 871 (2009)CrossRefGoogle Scholar
  20. 20.
    G. Hatui, A. Malas, P. Bhattacharya, S. Dhibar, M.K. Kundu, C.K. Das, J. Alloy. Compd. 619, 709 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Yasmin, J.J. Luo, I.M. Daniel, Compos. Sci. Technol. 66, 1182 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Karaipekli, A. Sarı, K. Kaygusuz, Renew. Energy 32, 2201 (2007)CrossRefGoogle Scholar
  23. 23.
    S.Y. Mun, H.M. Lim, S.H. Lee, Mater. Res. Bull. 97, 19 (2018)CrossRefGoogle Scholar
  24. 24.
    D.P.H. Hasselman, L.F. Johnson, J. Compos. Mater. 21, 508 (1987)CrossRefGoogle Scholar
  25. 25.
    G.W. Lee, J.I. Lee, S.S. Lee, M. Park, J. Kim, J. Mater. Sci. 40, 1259 (2005)CrossRefGoogle Scholar
  26. 26.
    W. Ling, A. Gu, G. Liang, L. Yuan, Polym. Compos. 31, 307 (2010)Google Scholar
  27. 27.
    T. Zhou, X. Wang, X. Liu, D. Xiong, Carbon 48, 1171 (2010)CrossRefGoogle Scholar
  28. 28.
    A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, J. Mater. Sci. 28, 8908 (2017)Google Scholar
  29. 29.
    Y. Hwang, M. Kim, J. Kim, Chem. Eng. J. 246, 229 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Agari, M. Tanaka, S. Nagai, T. Uno, J. Appl. Polym. Sci. 34, 1429 (1987)CrossRefGoogle Scholar
  31. 31.
    M.X. Shen, Y.X. Cui, J. He, Y.M. Zhang, Int. J. Miner. Met. Mater. 18, 623 (2011)CrossRefGoogle Scholar
  32. 32.
    S.L. Chung, J.S. Lin, Molecules 21, 670 (2016)CrossRefGoogle Scholar
  33. 33.
    A. Agrawal, A. Satapathy, Procedia Mater. Sci. 5, 517 (2014)CrossRefGoogle Scholar
  34. 34.
    J. Asante, F. Modiba, B. Mwakikunga, Int. J. Polym. Sci. (2016).  https://doi.org/10.1155/2016/1792502 CrossRefGoogle Scholar
  35. 35.
    S. Ibrahim, M.R. Johan, Int. J. Electrochem. Sci. 7, 2596 (2012)Google Scholar
  36. 36.
    P.K. Ghosh, S. Halder, M.S. Goyat, G. Karthik, J. Adhes. 89, 55 (2013)CrossRefGoogle Scholar
  37. 37.
    R. Kumar, A. Mishra, S. Sahoo, B.P. Panda, S. Mohanty, S.K. Nayak, Polym. Adv. Technol. 30, 1365 (2019)CrossRefGoogle Scholar
  38. 38.
    M.R. Zakaria, H.M. Akil, M.H.A. Kudus, S.S.M. Saleh, Compos. Part A 66, 109 (2014)CrossRefGoogle Scholar
  39. 39.
    L. Melnyk, Technol. Audit Prod. Reserv. 3, 28 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Gantayat, G. Prusty, D.R. Rout, S.K. Swain, New Carbon Mater. 30, 432 (2015)CrossRefGoogle Scholar
  41. 41.
    D.J. Green, P.S. Nicholson, J.D. Embury, J. Mater. Sci. 14, 1413 (1979)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.SARP-Laboratory for Advanced Research in Polymeric MaterialsCentral Institute of Plastics Engineering and Technology (CIPET)PatiaIndia

Personalised recommendations