Advertisement

Polymer/magnesia nanofiber composite sheets with anisotropic high thermal conductivity

  • Akiyoshi Ohgoshi
  • Kazuya Takahashi
  • Koji NakaneEmail author
Article
  • 30 Downloads

Abstract

The performance of an electronic product depends on how efficiently it can dissipate the heat of its parts. As a result, intensive ongoing research seeks to improve the thermal conductivity of polymeric materials. In this study, we investigate magnesia nanofibers as thermal conductive filler in the resin and compared them to conventional spherical filler. Magnesia nanofiber mats were fabricated by electrospinning a solution of polyvinyl alcohol and magnesium ethoxide mixtures; they were then impregnated with resins to obtain a composite sheet. We assessed the thermal conductivity of the composite sheet. The resin sheet with aligned magnesia nanofibers content (49 vol%) had high thermal conductivity (12.9 W/mK) in the direction parallel to the aligned magnesia nanofibers. The conductivity increased in proportion to magnesia nanofiber content. In addition, the magnesia nanofiber composite sheet showed anisotropic thermal conductivity derived from the fiber direction and had electrical insulation (7.7 × 1012 Ω/□), and flexibility. These electrically insulating sheets with anisotropy in thermal conductivity would be useful in designing effective heat removal paths in electronic devices.

Notes

Acknowledgements

This research did not receive any specific grant from funding agencies in the public or not-for-profit sectors, and is supported financially by Nissan Chemical Corporation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    K. Tanaka, S. Ogata, R. Kobayashi, T. Tamura, M. Kitsunezuka, A. Shinma, J. Appl. Phys. 114, 193512 (2013).  https://doi.org/10.1063/1.4831946 CrossRefGoogle Scholar
  2. 2.
    E.N. Galashov, A.A. Yusuf, E.M. Mandrik, V.V. Atuchun, Int. J. Manuf. Technol. 86, 475–478 (2016).  https://doi.org/10.1007/s00170-015-8186-8 CrossRefGoogle Scholar
  3. 3.
    Y. Agari, A. Ueda, M. Tanaka, S. Nagai, J. Appl. Polym. Sci. 40(56), 929–941 (1990).  https://doi.org/10.1002/app.1990.070400526 CrossRefGoogle Scholar
  4. 4.
    S. Yu, P. Hing, X. Hu, Composites A 33(2), 289–292 (2002).  https://doi.org/10.1016/S1359-835X(01)00107-5 CrossRefGoogle Scholar
  5. 5.
    Y. Agari, A. Ueda, S. Nagai, J. Appl. Polym. Sci. 49(9), 1625–1634 (1993).  https://doi.org/10.1002/app.1993.070490914 CrossRefGoogle Scholar
  6. 6.
    W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Mater. Res. Bull. 42(10), 1863–1873 (2007).  https://doi.org/10.1016/j.materresbull.2006.11.047 CrossRefGoogle Scholar
  7. 7.
    M. Harada, N. Hamaura, M. Ochi, Y. Agari, Composites B 55, 306–313 (2013).  https://doi.org/10.1016/j.compositesb.2013.06.031 CrossRefGoogle Scholar
  8. 8.
    D.S. Muratov, D.V. Kuznetsov, I.A. Ilinykh, I.N. Mazov, A.A. Stepashkin, V.V. Tcherdyntsev, J. Alloys Compd. 586, S451–S454 (2014).  https://doi.org/10.1016/j.jallcom.2012.11.142 CrossRefGoogle Scholar
  9. 9.
    K. Kim, M. Kim, Y. Hwang, J. Kim, Ceram. Int. 40(1), 2047–2056 (2014).  https://doi.org/10.1016/j.ceramint.2013.07.117 CrossRefGoogle Scholar
  10. 10.
    S. Choi, J. Kim, Composites B 51, 140–147 (2013).  https://doi.org/10.1016/j.compositesb.2013.03.002 CrossRefGoogle Scholar
  11. 11.
    C. Shao, H. Guan, Y. Liu, R. Mu, J. Mater. Sci. 4, 3821–3824 (2006).  https://doi.org/10.1007/s10853-005-5623-3 CrossRefGoogle Scholar
  12. 12.
    C. Xu, K. Yuan, X. Jin, Z. Yu, L. Zheng, Y. Lü, X. Wang, L. Zhu, G. Zhang, D. Xu, Ceram. Int. 43, 16210–16216 (2017).  https://doi.org/10.1016/j.ceramint.2017.08.199 CrossRefGoogle Scholar
  13. 13.
    K. Nakane, S. Ichikawa, S. Gao, M. Seto, S. Irie, S. Yonezawa, N. Ogata, Sen’i Gakkaishi 71(1), 67–71 (2015).  https://doi.org/10.2115/fiber.71.1 CrossRefGoogle Scholar
  14. 14.
    A. Ohgoshi, S. Gao, K. Takahashi, K. Nakane, J. Text. Eng. 65(4), 67–72 (2019)Google Scholar
  15. 15.
    T. Lopez, I. Garcia-Cruz, R. Gomez, J. Catal. 127, 75–85 (1991).  https://doi.org/10.1016/0021-9517(91)90210-U CrossRefGoogle Scholar
  16. 16.
    D.A.G. Bruggeman, Annal. der Phys. 416, 636–664 (1935).  https://doi.org/10.1002/andp.19354160705 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Frontier Fiber Technology and ScienceUniversity of FukuiFukuiJapan
  2. 2.Nissan Chemical CorporationFunabashiJapan

Personalised recommendations