Polymer/magnesia nanofiber composite sheets with anisotropic high thermal conductivity

  • Akiyoshi Ohgoshi
  • Kazuya Takahashi
  • Koji NakaneEmail author


The performance of an electronic product depends on how efficiently it can dissipate the heat of its parts. As a result, intensive ongoing research seeks to improve the thermal conductivity of polymeric materials. In this study, we investigate magnesia nanofibers as thermal conductive filler in the resin and compared them to conventional spherical filler. Magnesia nanofiber mats were fabricated by electrospinning a solution of polyvinyl alcohol and magnesium ethoxide mixtures; they were then impregnated with resins to obtain a composite sheet. We assessed the thermal conductivity of the composite sheet. The resin sheet with aligned magnesia nanofibers content (49 vol%) had high thermal conductivity (12.9 W/mK) in the direction parallel to the aligned magnesia nanofibers. The conductivity increased in proportion to magnesia nanofiber content. In addition, the magnesia nanofiber composite sheet showed anisotropic thermal conductivity derived from the fiber direction and had electrical insulation (7.7 × 1012 Ω/□), and flexibility. These electrically insulating sheets with anisotropy in thermal conductivity would be useful in designing effective heat removal paths in electronic devices.



This research did not receive any specific grant from funding agencies in the public or not-for-profit sectors, and is supported financially by Nissan Chemical Corporation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    K. Tanaka, S. Ogata, R. Kobayashi, T. Tamura, M. Kitsunezuka, A. Shinma, J. Appl. Phys. 114, 193512 (2013). CrossRefGoogle Scholar
  2. 2.
    E.N. Galashov, A.A. Yusuf, E.M. Mandrik, V.V. Atuchun, Int. J. Manuf. Technol. 86, 475–478 (2016). CrossRefGoogle Scholar
  3. 3.
    Y. Agari, A. Ueda, M. Tanaka, S. Nagai, J. Appl. Polym. Sci. 40(56), 929–941 (1990). CrossRefGoogle Scholar
  4. 4.
    S. Yu, P. Hing, X. Hu, Composites A 33(2), 289–292 (2002). CrossRefGoogle Scholar
  5. 5.
    Y. Agari, A. Ueda, S. Nagai, J. Appl. Polym. Sci. 49(9), 1625–1634 (1993). CrossRefGoogle Scholar
  6. 6.
    W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Mater. Res. Bull. 42(10), 1863–1873 (2007). CrossRefGoogle Scholar
  7. 7.
    M. Harada, N. Hamaura, M. Ochi, Y. Agari, Composites B 55, 306–313 (2013). CrossRefGoogle Scholar
  8. 8.
    D.S. Muratov, D.V. Kuznetsov, I.A. Ilinykh, I.N. Mazov, A.A. Stepashkin, V.V. Tcherdyntsev, J. Alloys Compd. 586, S451–S454 (2014). CrossRefGoogle Scholar
  9. 9.
    K. Kim, M. Kim, Y. Hwang, J. Kim, Ceram. Int. 40(1), 2047–2056 (2014). CrossRefGoogle Scholar
  10. 10.
    S. Choi, J. Kim, Composites B 51, 140–147 (2013). CrossRefGoogle Scholar
  11. 11.
    C. Shao, H. Guan, Y. Liu, R. Mu, J. Mater. Sci. 4, 3821–3824 (2006). CrossRefGoogle Scholar
  12. 12.
    C. Xu, K. Yuan, X. Jin, Z. Yu, L. Zheng, Y. Lü, X. Wang, L. Zhu, G. Zhang, D. Xu, Ceram. Int. 43, 16210–16216 (2017). CrossRefGoogle Scholar
  13. 13.
    K. Nakane, S. Ichikawa, S. Gao, M. Seto, S. Irie, S. Yonezawa, N. Ogata, Sen’i Gakkaishi 71(1), 67–71 (2015). CrossRefGoogle Scholar
  14. 14.
    A. Ohgoshi, S. Gao, K. Takahashi, K. Nakane, J. Text. Eng. 65(4), 67–72 (2019)Google Scholar
  15. 15.
    T. Lopez, I. Garcia-Cruz, R. Gomez, J. Catal. 127, 75–85 (1991). CrossRefGoogle Scholar
  16. 16.
    D.A.G. Bruggeman, Annal. der Phys. 416, 636–664 (1935). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Frontier Fiber Technology and ScienceUniversity of FukuiFukuiJapan
  2. 2.Nissan Chemical CorporationFunabashiJapan

Personalised recommendations