Neodymium doped zinc oxide for ultersensitive SERS substrate
- 40 Downloads
Abstract
We report on the fabrication of neodymium doped zinc oxide (ZNO) for use in surface-enhanced Raman spectroscopy (SERS). The SERS enhancement of ZNO nanoparticles exhibited 7 times higher than that of pure zinc oxide. We analyzed in detail the enhancement mechanism of the ZNO. The detection limit of malachite green (MG) was 10−7 M, and the SERS signal intensity showed a good linear relationship with the logarithm of the MG concentration (R2 = 0.9817). This indicates that ZNO is an excellent SERS substrate for trace analysis and ultrasensitive molecular sensing. This study provides a new strategy to improve the overall SERS property of ZnO-based materials via chemical doping.
Notes
Acknowledgements
This work is supported by the Natural Science Foundation of Jiangsu Province (BK20180884); Postdoctoral Fund of Jiangsu Province (1501067C).
References
- 1.Z.W. Cheng, B.W. Yang, Q.C. Chen, W.C. Ji, Z.M. Shen, Chem. Eng. J. 332, 351 (2018)Google Scholar
- 2.X.B. Feng, N. Gan, H.R. Zhang, Q. Yan, Q.L. Jiang, Biosens. Bioelectron. 74, 587 (2015)Google Scholar
- 3.X.L. Li, Y. Zhang, L.Y. Jing, X.H. He, Chem. Eng. J. 292, 326 (2016)Google Scholar
- 4.J.H. Park, J.Y. Byun, H. Jang, D. Hong, M.G. Kim, Biosens. Bioelectron. 97, 292 (2017)Google Scholar
- 5.S. Mostafa, M. Mahnaz, S.N. Ali, J. Mater. Sci.: Mater. Electron. 27, 474 (2016)Google Scholar
- 6.K. Nithiyadevi, K. Ravichandran, J. Mater. Sci.: Mater. Electron. 28, 10929 (2017)Google Scholar
- 7.L.J. Cheng, X.M. Hu, L. Hao, J. Mater. Sci.: Mater. Electron. 29, 6316 (2017)Google Scholar
- 8.R. Mirzajani, S. Ahmadi, J. Ind. Eng. Chem. 23, 171 (2015)Google Scholar
- 9.A.A.M. Stolker, T. Zuidema, M.W.F. Nielen, Trends Anal. Chem. 26, 967 (2007)Google Scholar
- 10.K. Halme, E. Lindfors, K. Peltonen, J. Chromatogr. B 845, 74 (2007)Google Scholar
- 11.Y. Zhang, W. Yu, L. Pei, K. Lai, B.A. Rasco, Food Chem. 169, 80 (2015)Google Scholar
- 12.M.J.M. Bueno, S. Herrera, A. Uclés, A. Agüera, M.D. Hernando, O. Shimelis, M. Rudolfsson, A.R. Fernández-Alba, Anal. Chim. Acta 665, 47 (2010)Google Scholar
- 13.Y.Z. Huang, Y.R. Fang, Z.L. Zhang, L. Zhu, M.T. Sun, Light-Sci. Appl. 3, 199 (2014)Google Scholar
- 14.Z.D. Zhu, B.F. Bai, O.B. You, Q.Q. Li, S.S. Fan, Light-Sci. Appl. 4, 296 (2015)Google Scholar
- 15.S. Cong, Z. Wang, W. Gong, Z.G. Chen, W.B. Lu, J.R. Lombardi, Z.G. Zhao, Nat. Commun. 10, 678 (2019)Google Scholar
- 16.G.H. Kim, L. Shao, K. Zhang, K.P. Pipe, Nat. Mater. 12, 719 (2013)Google Scholar
- 17.S. Feng, M.C. Santos, B.R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A.L. Elías, Y. Lei, N. Perea-López, M. Endo, M.H. Pan, M.A. Pimenta, M. Terrones, Sci. Adv. 2, 1600322 (2016)Google Scholar
- 18.L.B. Yang, Q.Q. Sang, J. Du, M. Yang, X.L. Li, Y. Shen, X.X. Han, X. Jiang, B. Zhao, Phys. Chem. Chem. Phys. 20, 15149 (2018)Google Scholar
- 19.Z.H. Zheng, S. Cong, W.B. Gong, J.N. Xuan, G.H. Li, W.B. Lu, F.X. Geng, Z.G. Zhao, Nat. Commun. 8, 1993 (2017)Google Scholar
- 20.X.X. Xue, W.D. Ruan, L.B. Yang, W. Ji, Y.F. Xie, L. Chen, W. Song, B. Zhao, J.R. Lombardi, J. Raman Spectrosc. 43, 61 (2012)Google Scholar
- 21.G.Z. Xing, J.B. Yi, F. Yan, T. Wu, S. Li, Appl. Phys. Lett. 104, 202411 (2014)Google Scholar
- 22.M. Kumaran, R. Gopalakrishnan, J. Sol-Gel Sci. Technol. 62, 193 (2012)Google Scholar
- 23.S.N. Ali, M. Mahnaz, H.M. Mostafa, J. Mol. Liq. 216, 1–5 (2016)Google Scholar
- 24.M. Mansournia, S. Rafizadeh, S.M. Mashkani, Ceram. Int. 42, 907 (2016)Google Scholar
- 25.M. Mansournia, S. Rafizadeh, S.M. Mashkani, M. Motaghedifard, Mater. Sci. Eng. C 65, 303 (2016)Google Scholar
- 26.T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142, 570 (1966)Google Scholar
- 27.M. Gao, C. Yan, B.Z. Li, L.J. Zhou, J.C. Yao, Y.J. Zhang, H.L. Liu, L.H. Cao, Y.T. Cao, J.H. Yang, Y.X. Wang, J. Alloys Compd. 724, 537 (2017)Google Scholar
- 28.J.J. Lee, G.Z. Xing, J.B. Yi, T. Chen, M. Ionescu, S. Li, Appl. Phys. Lett. 104, 012405 (2014)Google Scholar
- 29.D.D. Wang, G.Z. Xing, F. Yan, Y.S. Yan, S. Li, Appl. Phys. Lett. 104, 022412 (2014)Google Scholar
- 30.S. Yang, D.L. Han, M. Gao, J.H. Yang, Bayanheshig. CrystEngComm 16, 6896 (2014)Google Scholar
- 31.N.K. DivyaP, P. Pradyumnan, J. Mater. Sci.: Mater. Electron. 28, 2147 (2017)Google Scholar
- 32.F. Abrinaei, M. Shirazi, J. Mater. Sci.: Mater. Electron. 28, 17541 (2007)Google Scholar
- 33.M. Gao, J.C. Yao, C. Yan, X.F. Li, T.J. Hu, L. Chen, Y.X. Wang, Y.J. Zhang, H.L. Liu, Y. Liu, L.H. Cao, Y.T. Cao, J.H. Yang, J. Alloys Compd. 734, 282 (2018)Google Scholar
- 34.H.M. Mostafa, M. Mahnaz, S.N. Ali, J. Electron. Mater. 45, 7 (2016)Google Scholar
- 35.D.D. Wang, Q. Chen, G.Z. Xing, J.B. Yi, S.R. Bakaul, J. Ding, J.L. Wang, T. Wu, Nano Lett. 12, 3994 (2012)Google Scholar
- 36.G. Tobias, W. Tobias, B. Uwe, B. Torsten, F. Christian, K. Heinz, M. Timo, Light-Sci. Appl. 2, 82 (2013)Google Scholar
- 37.P. Wang, Y.P. Wang, L.M. Tong, Light-Sci. Appl. 2, 102 (2013)Google Scholar
- 38.H.L. Liu, W.J. Li, J.H. Yang, M. Gao, X.Y. Liu, M.B. Wei, J. Mater. Sci.: Mater. Electron. 28, 2949 (2017)Google Scholar
- 39.S.V. Sergeyev, C.B. Mou, E.G. Turitsyna, A. Rozhin, S.K. Turitsyn, K. Blow, Light-Sci. Appl. 3, 131 (2014)Google Scholar
- 40.Y.Y. Zhang, Y. Chen, Q.W. Kou, Z. Wang, D.L. Han, Y.T. Sun, J.H. Yang, Y. Liu, L.L. Yang, J. Mater. Sci.: Mater. Electron. 29, 3665 (2018)Google Scholar
- 41.M. Gao, G.Z. Xing, J.H. Yang, L.L. Yang, Y.J. Zhang, H.L. Liu, H.G. Fan, Y.S. Sui, B. Feng, Y.F. Sun, Z.Q. Zhang, H. Son, Microchim. Acta 179, 315 (2012)Google Scholar
- 42.X.Y. Zhang, D.L. Han, N. Ma, R.X. Gao, A.N. Zhu, S. Guo, Y.J. Zhang, Y.X. Wang, J.H. Yang, L. Chen, J. Phys. Chem. Lett. 9, 6047 (2018)Google Scholar
- 43.J. Yang, J. Du, J. Cao, M. Wei, H. Niu, L. Yang, X. Liu, M. Gao, J. Mater. Sci.: Mater. Electron. 29, 876 (2018)Google Scholar
- 44.L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, J.R. Lombardi, J. Phys. Chem. C 112, 20095 (2008)Google Scholar
- 45.H. Znad, M.H. Ang, M.O. Tade, Int. J. Photoenergy 2012, 548158 (2012)Google Scholar