Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20525–20536 | Cite as

An electron donating controlling strategy for design several dithieno[3,2-b:2′,3′-d]pyrrole based dyes with D–D–A structure in dye-sensitized solar cells

  • Gang Wang
  • Jiali Deng
  • Xiaobo WangEmail author
  • Jun Liu
  • Yuandao Chen
  • Bo LiuEmail author
Article
  • 15 Downloads

Abstract

One of the important strategies for designing pure organic dyes is to improve the electron donating abilities of dye donors hence increase the intramolecular potential energy difference. In order to quantify the electron-donating capacity of organic units, we firstly propose a parameter donation ability (DA) value for evaluating the electron DA of organic units via theoretical calculation, by using of several fragments such as coplanar dithiophenyl pyrrole, triphenylamine (TPA), phenothiazine (PTZ) and cyanoacetic acid (CA) which is the research objects here. Inspired by the DA values of the above organic fragments, dye PSD-9, PSA-10 and PST-11 were designed and synthesized. Cyclic voltammetric (CV) measurements show that the DA values of dye PSA-10 and PST-11’s donor increases when TPA and PTZ groups are introduced into PSD-9, hence HOMO level increases and the band-gap narrow down. This change is reflected in the absorption spectra: the maximum absorption wavelength of PSA-10 and PST-11 is 63 and 84 nm red-shifted compared with PSD-9. Similarly, the molar extinction coefficients of PSA-10 and PST-11 are increased by 34.7 × 103 and 14.7 × 103 M−1 cm−1, respectively. Combining a mesoporous titania film grafted by these dithiophenyl pyrrole dye with iodine electrolyte, an 4.2% and 4.8% power conversion effciency (PCE) is achieved for PSA-10 and PST-11 at an irradiance of the AM1.5G sunlight, with an significant increasing compared to PSD-9 with an PCE of 1.6%. The typical photocurrent density–voltage (JV) test shows that the short circuit current of dye PSA-10 and PST-11 is much higher than that of PSD-9, which is the main reason for the improvement of PCE. The red-shift and stronger IPCE curve is the most advantageous evidence of the change of short circuit current. Furthermore, electrochemical impedance measurements is studied for exploring the changes of open-circuit voltage of PSA-10 and PST-11, the results infer that larger donor units and long alkyl chains can effectively increasing current density on photoanode, hence increase the open circuit voltage of the devices.

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51703062, 2160 4022, 21502051), the Natural Science Foundation of Hunan Provincial (2019JJ50408, 2016JJ3097, 2018 JJ3370), Scientific Research Fund of Hunan Provincial Education Department (15B159), Huxiang Youth Talent Support Program (2018RS3147).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

References

  1. 1.
    B. O’Regan, M. Grätzel, Nature 353, 737–739 (1991)CrossRefGoogle Scholar
  2. 2.
    U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 395, 583–585 (1998)CrossRefGoogle Scholar
  3. 3.
    G. Micheal, Nature 414, 338–344 (2001)CrossRefGoogle Scholar
  4. 4.
    G. Micheal, R.A. Janssen, D.B. Mitzi, E.H. Sargent, Nature 488, 304–312 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel, Nat. Chem. 6, 242–247 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, L. Xinhui, C. Zhu, H. Peng, P. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 3, 1140–1151 (2019)CrossRefGoogle Scholar
  7. 7.
    J. Kawakita, Sci. Technol. Trends 35, 70–75 (2010)Google Scholar
  8. 8.
    M. Liang, J. Chen, Chem. Soc. Rev. 42, 3453–3488 (2013)CrossRefGoogle Scholar
  9. 9.
    B. Pashaei, H. Shahroosvand, M. Grätzel, M.K. Nazeeruddin, Chem. Rev. 116(16), 9485–9564 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Wang, K. Liu, L. Ma, X. Zhan, Chem. Rev. 116(23), 14675–14725 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595–6663 (2010)CrossRefGoogle Scholar
  12. 12.
    S.H. Kang, M.J. Jeong, Y.K. Eom, I.T. Choi, S.M. Kwon, Y. Yoo, J. Kim, J. Kwon, J.H. Park, H.K. Kim, Adv. Energy Mater. 7, 1602117–1602126 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Ren, D. Sun, Y. Cao, H.N. Tsao, Y. Yuan, S.M. Zakeeruddin, P. Wang, M. Grätzel, J. Am. Chem. Soc. 140, 2405–2408 (2018)CrossRefGoogle Scholar
  14. 14.
    Z. Yao, C. Yan, M. Zhang, R. Li, Y. Cai, P. Wang, Adv. Energy Mater. 4, 1400244 (2014)CrossRefGoogle Scholar
  15. 15.
    T. Khamrang, A. Seetharaman, M.D. Kumar, M. Velusamy, M. Jaccob, M. Ramesh, M. Kathiresan, A. Kathiravan, J. Phys. Chem. C 122(39), 22241–22251 (2018)CrossRefGoogle Scholar
  16. 16.
    S.S.M. Fernandes, M. Belsley, A.I. Pereira, D. Ivanou, A. Mendes, L.L.G. Justino, H.D. Burrows, M.M.M. Raposo, ACS Omega 3, 12893–12904 (2018)CrossRefGoogle Scholar
  17. 17.
    L. Zhang, X. Yang, W. Wang, G.G. Gurzadyan, J. Li, X. Li, J. An, Y. Ze, H. Wang, B. Cai, A. Hagfeldt, L. Sun, ACS Energy Lett. 4, 943–951 (2019)CrossRefGoogle Scholar
  18. 18.
    G. Wang, W. Yingying, W. Ding, Y. Guipeng, H. Zhubing, H. Wang, S. Liu, Y. Zou, C. Pan, J. Mater. Chem. A 3, 14217–14227 (2015)CrossRefGoogle Scholar
  19. 19.
    G. Wang, W. Ding, H. Wang, X. Zhou, Y. Guipeng, C. Pan, Synth. Met. 209, 119–127 (2015)CrossRefGoogle Scholar
  20. 20.
    W. Gang, T. Haijun, Z. Yiping, W. Yingying, H. Zhubin, Y. Guipeng, P. Chunyue, Synth. Met. 187, 17–23 (2014)CrossRefGoogle Scholar
  21. 21.
    W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Chem. Mater. 22, 1915–1925 (2010)CrossRefGoogle Scholar
  22. 22.
    J. Yang, Y. Jiang, T. Zeyi, Z. Zhao, J. Chen, Z. Yi, Y. Li, S. Wang, Ying Yi, Y. Guo, Y. Liu, Adv. Funct. Mater. 20(1), 13–19 (2010)CrossRefGoogle Scholar
  23. 23.
    B.C. O’Regan, J.R. Durrant, Acc. Chem. Res. 42(11), 1799–1808 (2009)CrossRefGoogle Scholar
  24. 24.
    J.-M. Ji, H. Zhou, H.K. Kim, J. Mater. Chem. A 6, 14518–14545 (2018)CrossRefGoogle Scholar
  25. 25.
    Z. Parsa, S.S. Naghavi, N. Safari, J. Phys. Chem. A 122(27), 5870–5877 (2018)CrossRefGoogle Scholar
  26. 26.
    F. Zhang, R. Wang, Y. Wang, X. Zhang, B. Liu, Phys. Chem. Chem. Phys. 21, 6256–6264 (2019)CrossRefGoogle Scholar
  27. 27.
    Y.K. Eom, I.T. Choi, S.H. Kang, J. Lee, J. Kim, M.J. Ju, H.K. Kim, Adv. Energy Mater. 5, 1500300–1500309 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Janasz, T. Marszalek, W. Zajaczkowski, M. Borkowski, W. Goldeman, A. Kiersnowski, D. Chlebosz, J. Rogowski, P. Blom, J. Ulanski, W. Pisula, J. Mater. Chem. C 6, 7830–7838 (2018)CrossRefGoogle Scholar
  29. 29.
    T. Marszalek, M. Lia, W. Pisula, Chem. Commun. 52, 10938–10947 (2016)CrossRefGoogle Scholar
  30. 30.
    N. Cai, J. Zhang, X. Mingfei, M. Zhang, P. Wang, Adv. Funct. Mater. 23, 3539–3547 (2013)CrossRefGoogle Scholar
  31. 31.
    H. Tan, C. Pan, G. Wang, W. Yingying, Y. Zhang, Y. Zou, Y. Guipeng, M. Zhang, Org. Electron. 14, 2795–2801 (2013)CrossRefGoogle Scholar
  32. 32.
    Y.K. Eom, S.H. Kang, I.T. Choi, Y. Yoo, J. Kim, H.K. Kim, J. Mater. Chem. A 5, 2297–2308 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemsitry and Materials EngineeringHunan University of Arts and ScienceChangdePeople’s Republic of China
  2. 2.Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic ZoneHunan University of Arts and ScienceChangdePeople’s Republic of China

Personalised recommendations