Advertisement

Synthesis, structural analysis, spectroscopic characterization and second order hyperpolarizability of 2-amino-4-methylpyridiniium-4-hydroxybenzolate crystal

  • C. Vidya
  • J. Jayaprakash
  • I. Ragavan
  • S. Shanavas
  • A. Priyadharsan
  • R. Acevedo
  • P. M. AnbarasanEmail author
Article
  • 16 Downloads

Abstract

Organic nonlinear optical (NLO) single crystals of 2-amino-4-methylpyridinium-4-hydroxybenzolate (2A4MP4HB) were grown by slow solvent evaporation (SSE) method. The title compound belongs to centrosymmetric space group P21/c in a monoclinic crystal system which was successfully studied by X-ray diffraction (XRD) study. Molecular geometry and vibration spectral (FTIR, RAMAN & NMR) analysis were carried out experimentally and theoretically by using density functional theory (DFT) at 6311++G(d,p) level of theory. Molecular geometry, HOMO–LUMO energy gap and molecular electrostatic potential (MEP) surface were derived by using DFT methods. The thermal characteristics of as-grown crystal were analyzed by using thermogravimetry (TG) and differential thermal analysis (DTA). The second order hyperpolarizability of 2A4MP4HB crystal was analyzed theoretically and the results are reported in this paper.

Notes

Acknowledgements

The authors are thankful to the learned referees for their useful and critical comments, which can be improved the quality of the manuscript. One of the Author (C. V) would like to acknowledge Periyar University for Finical support in the form of University Research Fellow.

Compliance with ethical standards

Conflict of interest

The authors declared that there is no conflict of interest.

Supplementary material

10854_2019_2396_MOESM1_ESM.doc (60 kb)
Supplementary material 1 (DOC 59 kb)

References

  1. 1.
    S. Raghavendra, K.V.A. Kumar, T. Chandra, S. Shetty, S.M. Dharmaprakash, Structural and optical properties of new organic crystal 1-[4-(methylsulfanyl) phenyl]-3-(2,4,5-trimethoxyphenyl) prop-2-en-1-one for optical limiting applications. J. Mol. Struct. 1074, 653–659 (2014).  https://doi.org/10.1016/j.molstruc.2014.06.050 CrossRefGoogle Scholar
  2. 2.
    K. Janardhana, V. Ravindrachary, P.C. Rajesh Kumar, Third order nonlinear optical studies of 1-(4-chloro phenyl)-3-(4-dimethylamino phenyl) prop-2-en-1-one. J. Cryst. Growth 368, 11–20 (2013).  https://doi.org/10.1016/j.jcrysgro.2012.12.169 CrossRefGoogle Scholar
  3. 3.
    P.V. Dhanaraj, N.P. Rajesh, G. Vinitha, G. Bhagavannarayana, Crystal structure and characterization of a novel organic optical crystal: 2-aminopyridinium trichloroacetate. Mater. Res. Bull. 46, 726–731 (2011).  https://doi.org/10.1016/j.materresbull.2011.01.013 CrossRefGoogle Scholar
  4. 4.
    J.-L. Brédas, C. Adant, P. Tackx, A. Persoons, B.M. Pierce, Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem. Rev. 94, 243–278 (1994).  https://doi.org/10.1021/cr00025a008 CrossRefGoogle Scholar
  5. 5.
    N. Sudharsana, B. Keerthana, R. Nagalakshmi, V. Krishnakumar, L.G. Prasad, Growth and characterization of hydroxyethylammonium picrate single crystals for third-order nonlinear optical applications. Mater. Chem. Phys. 134, 736–746 (2012).  https://doi.org/10.1016/j.matchemphys.2012.03.062 CrossRefGoogle Scholar
  6. 6.
    P. Audebert, K. Kamada, K. Matsunaga, K. Ohta, The third-order NLO properties of D-π-A molecules with changing a primary amino group into pyrrole. Chem. Phys. Lett. 367, 62–71 (2003).  https://doi.org/10.1016/S0009-2614(02)01575-0 CrossRefGoogle Scholar
  7. 7.
    V. Kannan, S. Brahadeeswaran, Synthesis, growth, thermal, optical and mechanical studies on 2-amino-6-methylpyridinium 4-hydroxybenzoate A novel organic nonlinear optical material. J. Therm. Anal. Calorim. (2015).  https://doi.org/10.1007/s10973-015-5174-z CrossRefGoogle Scholar
  8. 8.
    S. Dhanuskodi, S. Manikandan, Spectral studies of methyl-p-hydroxy benzoate: an organic nonlinear optical crystalline material. Cryst. Res. Technol. 39, 586–591 (2004).  https://doi.org/10.1002/crat.200310228 CrossRefGoogle Scholar
  9. 9.
    V. Krishnakumar, J. Jayaprakash, S. Boobas, M. Komathi, Synthesis, Growth, Optical and Anisotropic Mechanical Behaviour of Organic Nonlinear Optical Imidazolium 2-Chloro-4-nitrobenzoate Single Crystals (Phys. J. Plus, Eur, 2016).  https://doi.org/10.1140/epjp/i2016-16375-0 CrossRefGoogle Scholar
  10. 10.
    J.V. Jovita, A. Ramanand, P. Sagayaraj, K. Boopathi, P. Ramasamy, Studies on the growth and characterizations of 2-amino 4-methylpyridinium tartrate monohydrate single crystals. Optik (Stuttg) 126, 2348–2353 (2015).  https://doi.org/10.1016/j.ijleo.2015.05.143 CrossRefGoogle Scholar
  11. 11.
    V. Krishnakumar, J. Jayaprakash, S. Boobas, Photoconductivity, dielectric, thermal and mechanical studies on nonlinear optical phasematchable single crystal: 2-amino-4-methylpyridinium 4-nitrobenzoate. J. Mater. Sci.: Mater. Electron. 28, 1706–1714 (2017).  https://doi.org/10.1007/s10854-016-5716-6 CrossRefGoogle Scholar
  12. 12.
    G. Shanmugam, K. Thirupugalmani, V. Kannan, S. Brahadeeswaran, Spectroscopic, quantum-chemical and X-ray diffraction studies of piperidinium p-hydroxybenzoate-combined experimental and theoretical studies on a novel NLO crystal. Spectrochim. Acta A (2016).  https://doi.org/10.1016/j.saa.2013.01.006 CrossRefGoogle Scholar
  13. 13.
    S. Ambalatharasu, G. Peramaiyan, A. Sankar, R. Mohan Kumar, R. Kanagadurai, Growth, structural and nonlinear optical studies of benzimidazolium p-hydroxybenzoate crystal. Optik (Stuttg) 127, 2255–2259 (2016).  https://doi.org/10.1016/j.ijleo.2015.11.128 CrossRefGoogle Scholar
  14. 14.
    T. Arivazhagan, S.S. Solanki, N.P. Rajesh, Growth and characterization of butyl 4-hydroxybenzoate single crystal by vertical Bridgman technique for third order nonlinear optical applications. Opt. Laser Technol. 88, 188–193 (2017).  https://doi.org/10.1016/j.optlastec.2016.08.017 CrossRefGoogle Scholar
  15. 15.
    S. Kalaiyarasi, I.M. Zahid, S.R. Devi, R.M. Kumar, Studies on the growth aspects, structural and third-order nonlinear optical properties of Piperidinium 3-carboxy-4-hydroxy benzenesulfonate single crystal. J. Cryst. Growth 460, 105–111 (2017).  https://doi.org/10.1016/j.jcrysgro.2016.12.035 CrossRefGoogle Scholar
  16. 16.
    P. Sivakumar, S. Sudhahar, S. Israel, G. Chakkaravarthi, IUCr, 2-amino-4-methylpyridinium 4-hydroxybenzoate. IUCrData 1, x161425 (2016).  https://doi.org/10.1107/S2414314616014255 CrossRefGoogle Scholar
  17. 17.
    R.W.Boyd, Nonlinear Optics, (n.d.)Google Scholar
  18. 18.
    P. Srinivasan, A.Y. Nooraldeen, T. Kanagasekaran, A.N. Dhinaa, P.K. Palanisamy, R. Gopalakrishnan, Z-scan determination of the third-order optical nonlinearity of L-asparaginium picrate (LASP) crystal. Laser Phys. 18, 790–793 (2008).  https://doi.org/10.1134/S1054660X08060169 CrossRefGoogle Scholar
  19. 19.
    M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n(2) measurements. Opt. Lett. 14, 955–957 (1989).  https://doi.org/10.1364/ol.14.000955 CrossRefGoogle Scholar
  20. 20.
    D.J. Williams, P.N. Prasad, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1990)Google Scholar
  21. 21.
    T. Sivanandan, S. Kalainathan, Study on third order nonlinear optical properties of a metal organic complex—monothiourea–cadmium sulphate dihydrate single crystals grown in silica gel. J. Cryst. Growth 415, 25–30 (2015).  https://doi.org/10.1016/j.jcrysgro.2014.12.033 CrossRefGoogle Scholar
  22. 22.
    W.E. Watts, R. a. c, 6, 37–43 (2001)Google Scholar
  23. 23.
    C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988).  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  24. 24.
    W. Yang, P.W. Ayers, Density-Functional Theory, Computational Medicinal Chemistry for Drug Discovery (CRC Press, Boca Raton, 2003), pp. 103–132Google Scholar
  25. 25.
    A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  26. 26.
    A. Frisch, A.B. Nielsen, A.J. Holder, Gaussview Users Manual (Gaussian Inc, Pittsburgh, 2000)Google Scholar
  27. 27.
    M.H. Jamróz, Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim. Acta A 114, 220–230 (2013).  https://doi.org/10.1016/j.saa.2013.05.096 CrossRefGoogle Scholar
  28. 28.
    M.A. Wolff, S.K., Grimwood, D.J., McKinnon, J.J., Turner, M.J., Jayatilaka, D., Spackman, Crystal Explorer 3.0. (2012)Google Scholar
  29. 29.
    G. Fogarasi, X. Zhou, P.W. Taylor, P. Pulay, The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces. J. Am. Chem. Soc. 114, 8191–8201 (1992).  https://doi.org/10.1021/ja00047a032 CrossRefGoogle Scholar
  30. 30.
    P. Pulay, G. Fogarasi, X. Zhou, P.W. Taylo, Ab initio prediction of vibrational spectra: a database approach. Vibr. Spectr. (1990).  https://doi.org/10.1016/0924-2031(90)80030-8 CrossRefGoogle Scholar
  31. 31.
    H.-H. Perkampus, L.J. Bellamy, The Infrared spectra of complex molecules, Vol. 1, 3. Auflage, Chapman and Hall Ltd., London 1975, 433 Seiten, 32 Abb., 22 Tabellen, Preis: £ 8.—. Berichte Der Bunsengesellschaft Für Phys Chemie 80, 99–100 (1976).  https://doi.org/10.1002/bbpc.19760800121 CrossRefGoogle Scholar
  32. 32.
    G. Mahalakshmi, V. Balachandran, NBO, HOMO, LUMO analysis and vibrational spectra (FTIR and FT Raman) of 1-amino 4-methylpiperazine using ab initio HF and DFT methods. Spectrochim. A 135, 321–334 (2015).  https://doi.org/10.1016/j.saa.2014.06.157 CrossRefGoogle Scholar
  33. 33.
    M.V.S. Prasad, N. Udaya Sri, V. Veeraiah, A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde. Spectrochim. Acta A 148, 163–174 (2015).  https://doi.org/10.1016/j.saa.2015.03.105 CrossRefGoogle Scholar
  34. 34.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies (John Wiley, Chichester, 2004).  https://doi.org/10.1002/jrs.1238 CrossRefGoogle Scholar
  35. 35.
    J. Jeyaram, K. Varadharajan, B. Singaram, R. Rajendhran, Optical, photoconducting, thermal and anisotropic mechanical behaviours of benzimidazolium salicylate single crystals. J. Sci. Adv. Mater. Devices 2, 445–454 (2017).  https://doi.org/10.1016/j.jsamd.2017.09.004 CrossRefGoogle Scholar
  36. 36.
    A. Janaki, V. Balachandran, A. Lakshmi, First order molecular hyperpolarizabilities and intramolecular charge transfer from vibrational spectra of NLO material: 2,6-dichloro-4-nitroaniline. Indian J. Pure Appl. Phys. 51, 601–614 (2013).  https://doi.org/10.1002/jrs.2326 CrossRefGoogle Scholar
  37. 37.
    M. Mushtaque, M. Jahan, M. Ali, M.S. Khan, M.S. Khan, P. Sahay, A. Kesarwani, Synthesis, characterization, molecular docking, DNA binding, cytotoxicity and DFT studies of 1-(4-methoxyphenyl)-3-(pyridine-3-ylmethyl)thiourea. J. Mol. Struct. (2016).  https://doi.org/10.1016/j.molstruc.2016.05.087 CrossRefGoogle Scholar
  38. 38.
    S.S. Liu, X.H. Zhao, Y.Z. Li, M.D. Chen, M.T. Sun, DFT study of adsorption site effect on surface-enhanced Raman scattering of neutral and charged pyridine-Ag-4 complexes. Spectrochim. Acta A 73, 382–387 (2009).  https://doi.org/10.1016/j.saa.2009.02.036 CrossRefGoogle Scholar
  39. 39.
    S. Gunasekaran, S. Kumaresan, R.A. Balaji, G. Anand, S. Seshadri, Vibrational spectra and normal coordinate analysis on structure of chlorambucil and thioguanine. Pramana 71, 1291–1300 (2008)CrossRefGoogle Scholar
  40. 40.
    S. Seshadri, S. Gunasekaran, S. Muthu, Vibrational spectroscopy investigation using density functional theory on 7-chloro-3-methyl-2H-1,2,4- benzothiadiazine 1,1-dioxide. J. Raman Spectrosc. 40, 639–644 (2009).  https://doi.org/10.1002/jrs.2176 CrossRefGoogle Scholar
  41. 41.
    P. Udhayakala, S. Seshadri, T.V. Rajendiran, S. Gunasekaran, Vibrational spectroscopy investigation using ab initio and density functional theory on 3′-chloropropiophenone and 3′-nitropropiophenone. Spectrochim. Acta A 75, 567–573 (2010).  https://doi.org/10.1016/j.saa.2009.11.018 CrossRefGoogle Scholar
  42. 42.
    B. Ośmiałowski, E. Kolehmainen, R. Gawinecki, GIAO/DFT calculated chemical shifts of tautomeric species 2-phenacylpyridines and (Z)-2-(2-hydroxy-2-phenylvinyl) pyridines. Magn. Reson. Chem. 39(6), 334–340 (2001).  https://doi.org/10.1002/mrc.856 CrossRefGoogle Scholar
  43. 43.
    V. Arjunan, T. Rani, S. Mohan, Spectroscopic and quantum chemical electronic structure investigations of 2- (trifluoromethyl) aniline and 3- (trifluoromethyl) aniline. J. Mol. Struct. 994, 179–193 (2011).  https://doi.org/10.1016/j.molstruc.2011.03.015 CrossRefGoogle Scholar
  44. 44.
    J. Mohan, Organic Spectroscopy: Principles and Applications, vol. 206 (Alpha Science International Ltd, Oxford, 2004)Google Scholar
  45. 45.
    V.M. Longo, L.S. Cavalcante, R. Erlo, V.R. Mastelaro, A.T. de Figueiredo, J.R. Sambrano, S. de Lázaro, A.Z. Freitas, L. Gomes, N.D. Vieira, J.A. Varela, E. Longo, Strong violet-blue light photoluminescence emission at room temperature in SrZrO3: joint experimental and theoretical study. Acta Mater. 56, 2191–2202 (2008).  https://doi.org/10.1016/j.actamat.2007.12.059 CrossRefGoogle Scholar
  46. 46.
    S. Sankar, M. Manikandan, S.D. Gopal Ram, T. Mahalingam, G. Ravi, Gel growth of α and γ glycine and their characterization. J. Cryst. Growth 312, 2729–2733 (2010).  https://doi.org/10.1016/j.jcrysgro.2010.04.051 CrossRefGoogle Scholar
  47. 47.
    S. Vasuki, R.T. Karunakaran, G. Shanmugam, Polynomial model of the inhibition mechanism of thiourea derivatives. Zeitschrift Fur Phys. Chem. 230, 1655–1680 (2016).  https://doi.org/10.1515/zpch-2016-0848 CrossRefGoogle Scholar
  48. 48.
    A. Silambarasan, M. Krishna Kumar, A. Thirunavukkarasu, R. Mohan Kumar, P.R. Umarani, Synthesis, crystal growth, solubility, structural, optical, dielectric and microhardness studies of benzotriazole-4-hydroxybenzoic acid single crystals. J. Cryst. Growth 420, 11–16 (2015).  https://doi.org/10.1016/j.jcrysgro.2015.03.033 CrossRefGoogle Scholar
  49. 49.
    T. Karakurt, M. Diner, A. Etin, M. Ekerci, Molecular structure and vibrational bands and chemical shift assignments of 4-allyl-5-(2-hydroxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione by DFT and ab initio HF calculations. Spectrochim. Acta A 77, 189–198 (2010).  https://doi.org/10.1016/j.saa.2010.05.006 CrossRefGoogle Scholar
  50. 50.
    C.M. Lewandowski, N. Co-investigator, C.M. Lewandowski, Philicity: a unified treatment of chemical reactivity and selectivity. Eff. Br. Mindfulness Interv. Acute Pain Exp. An Exam. Individ. Differ 1, 1689–1699 (2015).  https://doi.org/10.1017/cbo9781107415324.004 CrossRefGoogle Scholar
  51. 51.
    L.C. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Cornell University Press, Ithaca, 1960)Google Scholar
  52. 52.
    R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978).  https://doi.org/10.1063/1.436185 CrossRefGoogle Scholar
  53. 53.
    I. Lukovits, I. Bakó, A. Shaban, E. Kálmán, Synthesis, structural characterization, DFT calculations and Hirshfeld surface analysis of (R)-2-((S)-2((S)-hydroxy(ferrocenyl)methyl)aziridin-1yl)butan-1-ol. Electrochim. Acta 43, 131–136 (1998).  https://doi.org/10.1016/S0013-4686(97)00241-7 CrossRefGoogle Scholar
  54. 54.
    P. Politzer, J.S. Murray, Relationships between dissociation energies and electrostatic potential of C-NO$_{2}$ bonds: applications to impact sensitivities. J. Mol. Struct. 376, 419–424 (1996)CrossRefGoogle Scholar
  55. 55.
    L. Name, F. Name, O. Training, P. Training, C. Darin, R.O. Training, M. Kimberly, G. Deepa, E. Board, E. Principal, I. Primary, F. Systems, E.B. Study, Spectroscopy of Polymers, 3–8 (2012).  https://doi.org/10.1007/s13398-014-0173-7.2
  56. 56.
    F. Guégan, P. Mignon, V. Tognetti, L. Joubert, C. Morell, Dual descriptor and molecular electrostatic potential: complementary tools for the study of the coordination chemistry of ambiphilic ligands. Phys. Chem. Chem. Phys. 16, 15558–15569 (2014).  https://doi.org/10.1039/c4cp01613k CrossRefGoogle Scholar
  57. 57.
    S.E. Mousavi, J.E. Pask, N. Sukumar, Efficient adaptive integration of functions with sharp gradients and cusps in n-dimensional parallelepipeds. Int. J. Numer. Methods Eng. 91, 343–357 (2012).  https://doi.org/10.1002/nme.4267 CrossRefGoogle Scholar
  58. 58.
    A. Sher Gill, S. Kalainathan, Synthesis, growth and characterization of a new derivative 4-ethoxy-N-methyl-4-stilbazolium besylate monohydrate single crystal. J. Phys. Chem. Solids 72, 961–967 (2011).  https://doi.org/10.1016/j.jpcs.2011.05.011 CrossRefGoogle Scholar
  59. 59.
    S. Sudhahar, M. Krishna Kumar, A. Silambarasan, R. Muralidharan, R. Mohan Kumar, Studies on structural, spectral, and optical properties of organic nonlinear optical single crystal: 2-amino-4,6-dimethylpyrimidinium p-hydroxybenzoate. J. Mater. 2013, 1–7 (2013).  https://doi.org/10.1155/2013/539312 CrossRefGoogle Scholar
  60. 60.
    G. Anandha Babu, P. Ramasamy, Growth and characterization of 2-amino-4-picolinium toluene sulfonate single crystal. Spectrochim. Acta A 82, 521–526 (2011).  https://doi.org/10.1016/j.saa.2011.08.003 CrossRefGoogle Scholar
  61. 61.
    Nonlinear optical properties of crystals, (n.d.)Google Scholar
  62. 62.
    D.A. Kleinman, Nonlinear dielectric polarization in optical media. Phys. Rev. 126, 1977–1979 (1962).  https://doi.org/10.1103/PhysRev.126.1977 CrossRefGoogle Scholar
  63. 63.
    P. Agarwal, N. Choudhary, A. Gupta, P. Tandon, Density functional theory studies on the structure, spectra (FT-IR, FT-Raman, and UV) and first order molecular hyperpolarizability of 2-hydroxy-3-methoxy-N-(2-chloro-benzyl)-benzaldehyde-imine: comparison to experimental data. Vib. Spectrosc. 64, 134–147 (2013).  https://doi.org/10.1016/j.vibspec.2012.11.005 CrossRefGoogle Scholar
  64. 64.
    A. Alparone, The effect of secondary structures on the NLO properties of single chain oligopeptides: a comparison between β-strand and α-helix polyglycines. Phys. Chem. Chem. Phys. 15, 12958–12962 (2013).  https://doi.org/10.1039/c3cp51496j CrossRefGoogle Scholar
  65. 65.
    A. Kumar, M.P.S. Yadav, Computational studies of third-order nonlinear optical properties of pyridine derivative 2-aminopyridinium p-toluenesulphonate crystal. Pramana (2017).  https://doi.org/10.1007/s12043-017-1397-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • C. Vidya
    • 1
  • J. Jayaprakash
    • 2
  • I. Ragavan
    • 1
  • S. Shanavas
    • 1
  • A. Priyadharsan
    • 1
  • R. Acevedo
    • 3
  • P. M. Anbarasan
    • 1
    Email author
  1. 1.Nano and Hybrid Materials Laboratory, Department of PhysicsPeriyar UniversitySalemIndia
  2. 2.Department of Science & HumanitiesSri Krishna College of Engineering and TechnologyCoimbatoreIndia
  3. 3.Facultad de Ingeniería y Tecnología, Universidad San SebastiánSantiagoChile

Personalised recommendations