Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 23, pp 20420–20431 | Cite as

Electromagnetic shielding of ultrathin, lightweight and strong nonwoven composites decorated by a bandage-style interlaced layer electropolymerized with polyaniline

  • Hao Lu
  • Bangquan Liao
  • Haibo Wang
  • Zhiwei XuEmail author
  • Nan Li
  • Liangsen Liu
  • Xingxiang Zhang
  • Ning Wu


The electromagnetic shielding materials with characteristics of ultrathin, lightweight and high strength are the most advantageous materials in electromagnetic shielding. In this work, novel carbon fiber nonwoven composites with interlayer microstructure were designed and prepared. Due to their special structure, carbon fiber nonwoven composites coated with polyaniline by means of electropolymerization showed excellent electromagnetic shielding (65 dB) and mechanical properties (bending strength of 457 MPa). More intriguing, the absolute SE (Shielding Effectiveness) of the composites can be as high as 3904 dB.cm2/g. In order to explore the elementary mechanisms of electromagnetic loss, the relevant calculation of electromagnetic shielding effectiveness was carried out. The experimental and theoretical results show that the reflection is the dominant shielding performance of the carbon fiber nonwoven composites. However, with the increase of electropolymerization time, the absorption loss was enhanced and the reflection was weakened, which was caused by the conductive polyaniline network structure covered on the nonwoven fiber surface. Based on the comparison between experimental results and theoretical calculation, the effect of multiple reflection loss on the total electromagnetic shielding performance was improved, and the loss mechanism of multiple reflection was analyzed in detail. Moreover, the surface roughness of fiber and the formation of polymerization products by electropolymerization could effectively enhance the interfacial strength between carbon fiber nonwoven and epoxy, which observably increased the bending strength by 83%.



The work was funded by the National Natural Science Foundation of China (11575126), the Natural Science Foundation of Tianjin (16JCZDJC37800, 16JCYBJC17700) and the Science and Technology Plans of Tianjin (16ZXCLGX00090).

Supplementary material

10854_2019_2379_MOESM1_ESM.pdf (219 kb)
Supplementary material 1 (PDF 219 kb)


  1. 1.
    H. Sun, R. Che, X. You, Y. Jiang, Z. Yang, J. Deng, Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26, 8120–8125 (2014)Google Scholar
  2. 2.
    B. Wen, M. Cao, M. Lu, W. Cao et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)Google Scholar
  3. 3.
    Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015)Google Scholar
  4. 4.
    E. Vazquez, M. Prato, Carbon nanotubes and microwaves: interactions, responses, and applications. ACS Nano 3, 3819–3824 (2009)Google Scholar
  5. 5.
    M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)Google Scholar
  6. 6.
    Z. Liu, G. Bai, Y. Huang, F. Li, Y. Ma, T. Guo, Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J. Phys. Chem. C 111, 13696–13700 (2007)Google Scholar
  7. 7.
    F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti, V.M. Primiani, Electromagnetic shielding performance of carbon foams. Carbon 50, 1972–1980 (2012)Google Scholar
  8. 8.
    H.B. Wang, K.Y. Teng, C. Chen, X.J. Li, Z.W. Xu et al., Conductivity and electromagnetic interference shielding of graphene-based architectures using MWCNTs as free radical scavenger in gamma irradiation. Mater. Lett. 186, 78–81 (2017)Google Scholar
  9. 9.
    D. Micheli, R.B. Morles, M. Marchetti, F. Moglie, V.M. Primiani, Broadband electromagnetic characterization of carbon foam to metal contact. Carbon 68, 149–158 (2014)Google Scholar
  10. 10.
    C. Liang, C. Liu, H. Wang, L. Wu, Z. Jiang, Y. Xu, SiCeFe3O4 dielectric magnetic hybrid nanowires: controllable fabrication, characterization and electromagnetic wave absorption. J. Mater. Chem. A 2, 16397–16402 (2014)Google Scholar
  11. 11.
    K.L. Wang, W. Wang, H.B. Wang, L.S. Liu, Z.W. Xu et al., 3D graphene foams/epoxy composites with double-sided binder polyaniline interlayers for maintaining excellent electrical conductivities and mechanical properties. Compos. Part A 110, 246–257 (2018)Google Scholar
  12. 12.
    W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li, C.Y. Wang, Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 77, 130–142 (2014)Google Scholar
  13. 13.
    H.B. Wang, W. Wang, Y.F. Zhao, Z.W. Xu, L. Chen et al., Superior adsorption of 3D nanoporous architectures for Ni(II) ions adsorption using polyvinyl alcohol as cross-linking agent and adsorption conveyor. RSC Adv. 8, 7899–7903 (2018)Google Scholar
  14. 14.
    Z. Wang, L. Wu, J. Zhou, Z. Jiang, B. Shen, Chemo selectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption. Nanoscale 6, 12298–12302 (2014)Google Scholar
  15. 15.
    W.X. Li, Z.W. Xu, L. Chen, M.J. Shan, X. Tian et al., A facile method to produce graphene oxide-g-poly(L-Lactic Acid)as an promising reinforcement for PLLA nanocomposites. Chem. Eng. J. 237, 291–299 (2014)Google Scholar
  16. 16.
    I. Arief, S. Biswas, S. Bose, FeCo-anchored reduced graphene oxide framework based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces. 9, 19202–19214 (2016)Google Scholar
  17. 17.
    B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, C.B. Park, Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly (vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces. 9, 20873–20884 (2017)Google Scholar
  18. 18.
    B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013)Google Scholar
  19. 19.
    W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015)Google Scholar
  20. 20.
    Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, X. Xue, Z. Zhang, Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13(34), 1701388 (2017)Google Scholar
  21. 21.
    Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Ultralight, superelastic and volume-preserving cellulose fiber/graphene aerogel for highperformance electromagnetic interference shielding. Carbon 115, 629–639 (2017)Google Scholar
  22. 22.
    X. Hong, D.D.L. Chung, Carbon nanofiber mats for electromagnetic interference shielding. Carbon 111, 529–537 (2017)Google Scholar
  23. 23.
    H.B. Wang, N. Li, Z.W. Xu, X. Tian, W. Mai et al., Enhanced sheet-sheet welding and interfacial wettability of 3D graphene networks as radiation protection in gamma-irradiated epoxy composites. Compos. Sci. Technol. 157, 57–66 (2018)Google Scholar
  24. 24.
    W.W. Jiang, H.B. Wang, Z.W. Xu, N. Li, C. Chen et al., A review on manifold synthetic and reprocessing methods of 3D porous graphene-based architecture for Li-ion anode. Chem. Eng. J. 335, 954–969 (2018)Google Scholar
  25. 25.
    Y. Xu, Y. Li, W. Hua, A. Zhang, J. Bao, Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property. ACS Appl. Mater. Interfaces. 8, 24131–24142 (2016)Google Scholar
  26. 26.
    H. Wu, D. Kong, Z. Ruan, P.C. Hsu, S. Wang, Z. Yu, J. Carney Thomas, L. Hu, S. Fan, Y. Cui, A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 8, 421–425 (2013)Google Scholar
  27. 27.
    S. An, H.S. Jo, D.Y. Kim, H.J. Lee, B.K. Ju, S.S. Al-Deyab, J.H. Ahn, Y. Qin, M.T. Swihart, A.L. Yarin, S.S. Yoon, Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating. Adv. Mater. 28, 7149–7154 (2016)Google Scholar
  28. 28.
    Y. Wang, J. Cheng, Y. Xing, M. Shahid, H. Nishijima, W. Pan, Stretchable platinum network-based transparent electrodes for highly sensitive wearable electronics. Small 13, 1604291 (2017)Google Scholar
  29. 29.
    J.C. Wang, C.S. Xiang, Q. Liu, Y.N. Pan, J.K. Guo, Ordered mesoporous carbon/fused silica composites. Adv. Funct. Mater. 18, 2995–3002 (2008)Google Scholar
  30. 30.
    J.C. Wang, H. Zhou, J.D. Zhuang, Q. Liu, Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites. Sci. Rep. 3, 3252 (2013)Google Scholar
  31. 31.
    B. Jiang, T. Zhang, Y.D. Huang, Interfacially reinforced carbon fiber composites by grafting modified methylsilicone resin. Compos. Sci. Technol. 140, 39–45 (2017)Google Scholar
  32. 32.
    C. Zhang, L.S. Liu, Z.W. Xu, H.M. Lv, N. Wu et al., Improvement for interface adhesion of epoxy/carbon fibers endowed with carbon nanotubes via microwave plasma-enhanced chemical vapor deposition. Polym. Compos. 39, E1262–E1268 (2018)Google Scholar
  33. 33.
    H.M. Wu, Z.Y. Zhou, L. Chen, W.X. Li, Q.Q. Han et al., PECVD-induced growing of diverse nanomaterials on carbon nanofibers under various conditions. Mater. Lett. 216, 291–294 (2018)Google Scholar
  34. 34.
    J. Liu, Y.L. Tian, Y.J. Chen, J.Y. Liang, L.F. Zhang, H. Feng, A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers. Mater. Chem. Phys. 122, 548–555 (2010)Google Scholar
  35. 35.
    X. Qian, J.H. Zhi, L.Q. Chen, J. Huang, Y.G. Zhang, Effect of low current density electrochemical oxidation on the properties of carbon fiber-reinforced epoxy resin composites. Surf. Interface Anal. 45, 937–942 (2013)Google Scholar
  36. 36.
    F. Severini, L. Formaro, M. Pegoraro, L. Posca, Chemical modification of carbon fiber surfaces. Carbon 40, 735–741 (2002)Google Scholar
  37. 37.
    K.Z. Li, C. Wang, H.J. Li, X.T. Li, H.B. Yang, J. Wei, Effect of chemical vapor deposition treatment of carbon fibers on the reflectivity of carbon fiber-reinforced cement-based composites. Compos. Sci. Technol. 68, 1105–1114 (2008)Google Scholar
  38. 38.
    Z.W. Xu, L.S. Liu, Y.D. Huang, Y. Sun, X.Q. Wu, J.L. Li, Graphitization of polyacrylonitrile carbon fibers and graphite irradiated by γ rays. Mater. Lett. 63, 1814–1816 (2009)Google Scholar
  39. 39.
    S. Tiwari, J. Bijwe, S. Panier, Gamma radiation treatment of carbon fabric to improve the fiber–matrix. Wear 271, 2184–2192 (2011)Google Scholar
  40. 40.
    Z.W. Xu, Y.D. Huang, C.H. Zhang, L. Liu, Y.H. Zhang, L. Wang, Effect of γ-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites. Compos. Sci. Technol. 67, 3261–3270 (2007)Google Scholar
  41. 41.
    X.H. Sui, Z.W. Xu, C.S. Hu, L. Chen, L.S. Liu, L.Y. Kuang, Microstructure evolution in γ-irradiated carbon fibers revealed by a hierarchical model and Raman spectra from fiber section. Compos. Sci. Technol. 130, 46–52 (2016)Google Scholar
  42. 42.
    A. Dumanl, A. Erden, Y. Yürüm, Development of supercapacitor active composites by electrochemical deposition of polypyrrole on carbon nanofibres. Polym. Bull. 68, 1395–1404 (2012)Google Scholar
  43. 43.
    A. Murat, A comparative study of redox parameters and electrochemical impedance spectroscopy of polycarbazole derivatives on carbon fiber microelectrode. Fiber Polym. 11, 1094–1100 (2010)Google Scholar
  44. 44.
    M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019)Google Scholar
  45. 45.
    Z.Q. Tong, L. Shikun, X.G. Li et al., Facile and controllable construction of vanadium pentoxide@conducting polymer core/shell nanostructures and their thickness-dependent synergistic energy storage properties. Electrochim. Acta 222, 194–202 (2016)Google Scholar
  46. 46.
    A. Attout, S. Yunus, P. Bertrand, Electroless deposition of polyaniline: synthesis and characterization. Surf. Interface Anal. 40, 657–660 (2008)Google Scholar
  47. 47.
    X.X. Wang, J.C. Shu, W.Q. Cao, M. Zhang, J. Yuan et al., Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 369, 1068–1077 (2019)Google Scholar
  48. 48.
    M. Arjmand, M. Mahmoodi, S. Park, U. Sundararaj et al., Impact of foaming on the broadband dielectric properties of multi-walled carbon nanotube/polystyrene composites. J. Cell. Plast. 50, 551–562 (2014)Google Scholar
  49. 49.
    S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan et al., EMI shielding: methods and materials-a review. J. Appl. Polym. Sci. 112, 2073–2086 (2009)Google Scholar
  50. 50.
    Y. Wang, W. Wang, D. Yu, Three-phase heterostructures f-NiFe2O4/PANI/PI EMI shielding fabric with high Microwave Absorption Performance. Appl. Surf. Sci. 425, 518–525 (2017)Google Scholar
  51. 51.
    J.Q. Ling, W.T. Zhai, W.W. Feng, B. Shen, J.F. Zhang, W.G. Zheng, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 5, 2677–2684 (2013)Google Scholar
  52. 52.
    G.S. Kumar, T.U. Patro, Efficient electromagnetic interference shielding and radar absorbing properties of ultrathin and flexible polymer-carbon nanotube composite films. Mater. Res. Express 5(11), 115304 (2018)Google Scholar
  53. 53.
    S. Teotia, B.P. Singh, I. Elizabeth, V.N. Singh, R. Ravikumar, A.P. Singh, S. Gopukumar et al., Multifunctional, robust, light-weight, free-standing MWCNT/phenolic composite paper as anodes for lithium ion batteries and EMI shielding material. RSC Adv. 4, 33168 (2014)Google Scholar
  54. 54.
    Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)Google Scholar
  55. 55.
    Z.H. Zeng, M.J. Chen, H. Jin, W.W. Li, X. Xue, L.C. Zhou et al., Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2015)Google Scholar
  56. 56.
    P. Saini, V. Choudhary, V.B. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113, 919–926 (2009)Google Scholar
  57. 57.
    X.Y. Sun, X. Liu, X. Shen, Y. Wu, Z.Y. Wang, J.K. Kim, Reprint of Graphene foam/carbon nanotube/poly(dimethyl siloxane)composites for exceptional microwave shielding. Compos. Part. A 92, 190–197 (2016)Google Scholar
  58. 58.
    H. Mohammed, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009)Google Scholar
  59. 59.
    A. Ameli, P.U. Jung, C.B. Park, Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60, 379–391 (2013)Google Scholar
  60. 60.
    D.X. Yan, P.G. Ren, H. Pang, Q. Fu, M.B. Yang, Z.M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22, 18772–18774 (2012)Google Scholar
  61. 61.
    T. Bansala, M. Joshi, S. Mukhopadhyay, R. Doong, M. Chaudhary, Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band. J. Mater. Sci. 52, 1546–1560 (2017)Google Scholar
  62. 62.
    H. Mohammed, A. Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 738–746 (2009)Google Scholar
  63. 63.
    Y. Wu, Z.Y. Wang, X. Liu, X. Shen, Q.B. Zheng, Q. Xue, Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 9, 9059–9069 (2017)Google Scholar
  64. 64.
    W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)Google Scholar
  65. 65.
    J. Lee, Y.N. Liu, Y. Liu, S. Park, M. Parkc, H.Y. Kim, Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics. J. Mater. Chem. C 5, 7853–7861 (2017)Google Scholar
  66. 66.
    H. Wang, K. Zheng, X. Zhang, X. Ding, Z.X. Zhang et al., 3D network porous polymeric composites with outstanding electromagnetic interference shielding. Compos. Sci. Technol. 125, 22–29 (2016)Google Scholar
  67. 67.
    M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018)Google Scholar
  68. 68.
    Y.H. Zhang, S.J. Park, Enhanced interfacial interaction by grafting carboxylated-macromolecular chains on nanodiamond surfaces for epoxy-based thermosets. J. Polym. Sci. Polym. Phys. 55(24), 1890–1898 (2017)Google Scholar
  69. 69.
    Z.B. Zhao, K.Y. Teng, N. Li, X.J. Li, Z.W. Xu et al., Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface. Compos. Struct. 159, 761–772 (2017)Google Scholar
  70. 70.
    M.J. Shan, H.B. Wang, Z.W. Xu, N. Li, C. Chen et al., Synergetic improvement of mechanical properties and surface activities in g-irradiated carbon fibers revealed by radial positioning spectroscopy and mechanical model. Anal. Methods 10, 496–503 (2018)Google Scholar
  71. 71.
    Y. Ni, L. Chen, K.Y. Teng, J. Shi, X.M. Qian et al., Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl. Mater. Interfaces. 7, 11583–11591 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hao Lu
    • 1
  • Bangquan Liao
    • 1
  • Haibo Wang
    • 2
  • Zhiwei Xu
    • 2
    Email author
  • Nan Li
    • 2
  • Liangsen Liu
    • 2
  • Xingxiang Zhang
    • 2
  • Ning Wu
    • 2
  1. 1.School of Physical Science and TechnologyTianjin Polytechnic UniversityTianjinChina
  2. 2.Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Textiles Science and EngineeringTianjin Polytechnic UniversityTianjinChina

Personalised recommendations