Room temperature ferromagnetism in ball milled Cu-doped ZnO nanocrystallines: an experimental and first-principles DFT studies

  • O. M. LemineEmail author
  • T. Almusidi
  • M. B. Kanoun
  • S. Goumri-Said
  • M. Alshammari
  • N. Abdel All
  • Ali Z. Alanzi
  • Fahad S. Alghamdi
  • A. Alyamani


Experimental and theoretical studies on the room temperature ferromagnetism of ball milled Zn0.95Cu0.05O nanocrystalline, were reported. X-ray diffraction analysis reveals that the most dominant crystalline phase is hexagonal wurtzite with presence of weak peaks due to Cu and CuO. Rietveld analysis indicated that the crystallite size decreases with increasing milling time, while the strain enhanced with milling time. Magnetic measurements using SQUID expose remarkable room temperature ferromagnetic ordering for milled samples. The physical origin of the ferromagnetism order has been explained using a bound magnetic polaron model. Theoretical calculations based on First principles methods were employed to calculate the electronic structures and magnetic properties of Cu doping and zinc and oxygen vacancies behavior of Zn1−xCuxO. It was found that a Cu dopant leads to induce magnetism and exhibits an increasing of magnetic moment when Zn vacancy are introduced.



  1. 1.
    M.C. Jaworski, J. Yang, S. Mack, D.D. Awschalom, J.P. Heremans, R.C. Myers, Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010)CrossRefGoogle Scholar
  2. 2.
    H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 14, 951–956 (1998)CrossRefGoogle Scholar
  3. 3.
    J.K.J. Furdyna, Diluted magnetic semiconductors. Appl. Phys. 64, R29–R64 (1988)CrossRefGoogle Scholar
  4. 4.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673 (2003)CrossRefGoogle Scholar
  5. 5.
    M.B. Kanoun, Insight into the origin of magnetism in Iron-doped cadmium sulfide thin films from first principles calculations. Solid State Commun. 253, 10–13 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Titov, X. Biquard, D. Halley, S. Kuroda, E. Bellet-Amalric, H. Mariette, J. Cibert, A.E. Merad, M.B. Kanoun, E. Kulatov, YuA Uspenskii, X-ray absorption near-edge structure and valence state of Mn in (Ga, Mn)N. Phys. Rev. B 72, 115209 (2005)CrossRefGoogle Scholar
  7. 7.
    M.B. Kanoun, S. Goumri-Said, A.E. Merad, J. Cibert, First-principles investigation of electronic structure and magnetic properties in ferromagnetic Ga1-xMnxN and Al1-xMnxN. J. Phys. D 38, 1853 (2005)CrossRefGoogle Scholar
  8. 8.
    K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles. Physica B 537, 167 (2018)CrossRefGoogle Scholar
  9. 9.
    M.B. Kanoun, S. Goumri-Said, A. Manchon, U. Schwingenschlogl, Ferromagnetism carried by highly delocalized hybrid states in Sc-doped ZnO thin films. Appl. Phys. Lett. 100, 222406 (2012)CrossRefGoogle Scholar
  10. 10.
    M.A. Garcia, M.L. Ruiz Gonzalez, A. Quesada, J.L. Costa-Kramer, J.F. Fernandez, S.J. Khatib, A. Wennberg, A.C. Caballero, M.S. Martın Gonzalez, M. Villegas, F. Briones, J.M. Gonzalez-Calbet, A. Hernando, Interface double-exchange ferromagnetism in the Mn-Zn-O system: new class of biphase magnetism. Phys. Rev. Lett. 94, 217206 (2005)CrossRefGoogle Scholar
  11. 11.
    M.B. Kanoun, S. Goumri-Said, U. Schwingenschlogl, A. Manchon, Magnetism in Sc-doped ZnO with zinc vacancies: a hybrid density functional and GGA + U approaches. Chem. Phys. Lett. 532, 96–99 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010)CrossRefGoogle Scholar
  13. 13.
    G.H. Mhlongo, K. Shingange, Z.P. Tshabalala, B.P. Dhonge, F.A. Mahmoud, B.W. Mwakikunga, D.E. Motaung, Room temperature ferromagnetism and gas sensing in ZnO nanostructures: influence of intrinsic defects and Mn, Co, Cu doping. Appl. Surf. Sci. 390, 804–815 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Bououdina, N. Mamouni, O.M. Lemine, A. Al-Saie, A. Jaafar, B. Ouladdiaf, A. El Kenz, A. Benyoussef, E.K. Hlil, Neutron diffraction study and ab initio calculations of nanostructured doped ZnO. J. Alloys Compd. 536, 66–72 (2012)CrossRefGoogle Scholar
  15. 15.
    K. Omri, J. ElGhoul, O.M. Lemine, M. Bououdina, B. Zhang, L. ElMir, Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol–gel technique. Superlattice Microstruct. 60, 139–147 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Bououdina, K. Omri, M. El-Hilo, A. El Amiri, O.M. Lemine, A. Alyamani, E.K. Hlil, H. Lassri, L. El Mir, Structural and magnetic properties of Mn-doped ZnO nanocrystals. Physica E 56, 107–112 (2014)CrossRefGoogle Scholar
  17. 17.
    P.K. Sharma, R.K. Dutta, A.C. Pandey, Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2 + nanorods. J. Magn. Magn. Mater. 321, 4001–4005 (2009)CrossRefGoogle Scholar
  18. 18.
    H.L. Liu, J.H. Yang, Y.J. Zhang, Y.X. Wang, M.B. Wei, D.D. Wang, L.Y. Zhao, J.H. Lang, M. Gao, Calculation of the g factors and local angular distortions for ZnO:Cu2+ nanocrystals with various copper concentrations. J. Mater. Sci.: Mater. Electron. 20, 628–631 (2009)Google Scholar
  19. 19.
    M. Zhu, Z. Zhang, M. Zhong, M. Tariq, Y. Li, W. Li, H. Jin, K. Skotnicov, Y. Li, Oxygen vacancy induced ferromagnetism in Cu-doped ZnO. Ceram. Int. 43, 3166–3170 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Modwi, M.A. Abbo, E.A. Hassan, A. Houas, Effect of annealing on physicochemical and photocatalytic activity of Cu5% loading on ZnO synthesized by sol–gel method. J. Mater. Sci.: Mater. Electron. 27, 12974–12984 (2016)Google Scholar
  21. 21.
    O.M. Lemine, A. Modwi, A. Houas, J.H. Dai, Y. Song, M. Alshammari, A. Alanzi, R. Alhathlool, M. Bououdina, Room temperature ferromagnetism in Ni, Fe and Ag co-doped Cu–ZnO nanoparticles: an experimental and first-principles DFT study. J. Mater. Sci.: Mater. Electron. 29, 14387–14395 (2018)Google Scholar
  22. 22.
    B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, R. Kumar, H.K. Choudhary, V.B. Khopkar, A.V. Anupama, B. Sahoo, Investigation of structural, morphological and NTCR behaviour of Cu-doped ZnO nanoceramics synthesized by high energy ball milling. Mater. Chem. Phys. 221, 419–429 (2019)CrossRefGoogle Scholar
  23. 23.
    B.E. Filali, T.V. Torchynsk, A.I. Diaz Cano, Photoluminescence and Raman scattering study in ZnO: Cu nanocrystals. J. Lumin. 161, 25–30 (2015)CrossRefGoogle Scholar
  24. 24.
    B.K. Das, T. Das, K. Parashar, A. Thirumurugan, Structural, bandgap tuning and electrical properties of Cu doped ZnO nanoparticles synthesized by mechanical alloying. J. Mater. Sci.: Mater. Electron. 28, 15127–15134 (2017)Google Scholar
  25. 25.
    S. Balamurugan, K. Melba, Nanomaterials prepared by ball milling, citrate sol gel, and molten salt flux methods. J. Nanosci. Nanotechnol. 14, 1–9 (2014)CrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  27. 27.
    QuantumATK O-2018.06, Synopsys Quantum ATK (
  28. 28.
    W.S. Yun, J.D. Lee, Unexpected strong magnetism of Cu doped single-layer MoS2 and its origin. Phys. Chem. Chem. Phys. 16, 8990–8996 (2014)CrossRefGoogle Scholar
  29. 29.
    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001)CrossRefGoogle Scholar
  30. 30.
    M.H. Carvalho, M. Rizzo Piton, O.M. Lemine, M. Bououdina, H.V.A. Galeti, S. Souto, E.C. Pereira, Y. Galvão Gobato, A.J.A. de Oliveira, Effects of strain, defects and crystal phase transition in mechanically milled nanocrystalline In2O3 powder. Mater. Res. Exp. 6, 025017 (2019)CrossRefGoogle Scholar
  31. 31.
    A. Punnoose, H. Magnone, M.S. Seehra, J. Bonevich, Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles. Phys. Rev. B 64, 174420 (2001)CrossRefGoogle Scholar
  32. 32.
    W. Liu, X. Tang, Z. Tang, F. Chu, T. Zeng, N. Tang, Role of oxygen defects in magnetic property of Cu doped ZnO. J. Alloys Compd. 615, 740–744 (2014)CrossRefGoogle Scholar
  33. 33.
    G.H. Mhlongo, K. Shingange, Z.P. Tshabalala, B.P. Dhonge, F.A. Mahmoud, B.W. Mwakikunga, D.E. Motaung, Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping. Appl. Surf. Sci. 390, 804–815 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Fang, C.M. Tang, Z.W. Liu, Microwave-assisted hydrothermal synthesis of Cu-doped ZnO single crystal nanoparticles with modified photoluminescence and confirmed ferromagnetism. J. Electron. Mater. 47, 1390–1396 (2018)CrossRefGoogle Scholar
  35. 35.
    B.D. Cullity, C.D. Graham, Introduction to magnetic materials (Wiley, Hoboken, 2011), pp. 125–127Google Scholar
  36. 36.
    P. Gopal, N.A. Spaldin, Magnetic interactions in transition-metal-doped ZnO: An ab initio study. Phys. Rev. B 74, 094418 (2006)CrossRefGoogle Scholar
  37. 37.
    Q. Wang, Q. Sun, P. Jena, Y. Kawazoe, Magnetic properties of transition-metal-doped Zn1−xTxO (T = Cr, Mn, Fe Co, and Ni) thin films with and without intrinsic defects: a density functional study. Phys. Rev. B 79, 115407 (2009)CrossRefGoogle Scholar
  38. 38.
    Y.F. Zhang, M. Feng, B. Shao, Y. Lu, H. Liu, X. Zuo, Ab initio calculations on magnetism induced by composite defects in magnesium oxide. J. Appl. Phys. 115, 17A926 (2014)CrossRefGoogle Scholar
  39. 39.
    B. Ghosh, M. Sardar, S. Banerjee, Destruction of ferromagnetism in Cu-doped ZnO upon thermal annealing: role of oxygen vacancy. J. Phys. D 46, 135001 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Goumri-Said, W. Khan, K. Boubaker, G. Turgut, E. Sönmez, J. Minar, M. Bououdina, M.B. Kanoun, Europium incorporation dynamics within NiO films deposited by sol-gel spin coating: experimental and theoretical studies. Mater. Res. Bull. 118, 110525 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, College of SciencesAl Imam Mohammad Ibn Saud Islamic University (IMISU)RiyadhSaudi Arabia
  2. 2.Physics Department, College of ScienceKing Faisal UniversityAl-AhsaSaudi Arabia
  3. 3.College of Science, Physics DepartmentAlfaisal UniversityRiyadhSaudi Arabia
  4. 4.The National Center for Laser and Optoelectronics, KACSTRiyadhSaudi Arabia
  5. 5.Physics DepartmentAssiut UniversityAssiutEgypt
  6. 6.National Nanotechnology Center, KACSTRiyadhSaudi Arabia

Personalised recommendations