Construction of BiOBrxI1−x/MXene Ti3C2Tx composite for improved photocatalytic degradability

  • Xian Shi
  • Pingquan WangEmail author
  • Lan Lan
  • Shenglong Jia
  • Ziyu Wei


Forming BiOBrxI1−x solid solution structural photocatalyst has been regarded as an efficient method for photocatalytic property of bismuth oxyhalides (Bi–O–X, X = Br, Cl and I) photocatalysts. In this work, in order to further improve the photocatalytic property of BiOBrxI1−x, MXene Ti3C2Tx material was used to construct heterostructural photocatalyst with BiOBrxI1−x. The MXene Ti3C2Tx was achieved by etching the Ti3AlC2 with HF and its layered structure was firstly confirmed by X-ray diffraction, scanning electron microscope and high resolution transmission electron microscope. The BiOBr0.5I0.5/MXene Ti3C2Tx (BOT-5) composite was achieved through a simple synthesis process and its heterostructure was determined by efficient characterizations. Through degradation experiments, the improved photocatalytic degradation property for Rhodamine B (RhB) and phenol of BOT-5 was observed and its excellent chemical stability was also verified meanwhile. The photocatalytic mechanism of BOT-5 was further explored in this work. Through efficient experimental strategies, the enhanced carrier photocatalysis of BOT-5 together with its inhibited extinction photocatalysis was verified. Benefiting from the enhanced carrier photocatalysis of BOT-5, more superoxide and hydroxyl radicals were generated and supported its enhanced photocatalytic degradability.



This work is supported by National Natural Science Foundation of China (Grant No. 51702270), the Scientific Research Starting Project of SWPU (Grant No. 2015QHZ001), Young Scholars Development Fund of SWPU (Grant No. 201499010100), Open Fund (Grant No. 201601) of State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University).

Supplementary material

10854_2019_2346_MOESM1_ESM.docx (685 kb)
Supplementary material 1 (DOCX 685 kb)


  1. 1.
    Y. Bai, L. Ye, W. Li, X. Shi, P. Wang, W. Bai, P. Wong, g-C3N4/Bi4O5I2 heterojunction with I3−/I redox mediator for enhanced photocatalytic CO2 conversion. Appl. Catal. B 194, 98–104 (2016)CrossRefGoogle Scholar
  2. 2.
    K. Zhang, C. Liu, F. Huang, C. Zheng, W. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 68, 125–129 (2006)CrossRefGoogle Scholar
  3. 3.
    F. Jie, Y. Tian, B. Chang, F. Xi, X. Dong, BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. J. Mater. Chem. 22, 21159–21166 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Yan, L. Wen, Z. Wang, D. Cao, Y. Fang, L. Yong, Building of anti-restack 3D BiOCl hierarchitecture by ultrathin nanosheets towards enhanced photocatalytic activity. Appl. Catal. B 176, 331–337 (2015)Google Scholar
  5. 5.
    S. Meng, W. Wang, L. Zhang, Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. J. Hazard. Mater. 167, 803–809 (2009)CrossRefGoogle Scholar
  6. 6.
    L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The 001 facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 47, 6951–6953 (2011)CrossRefGoogle Scholar
  7. 7.
    H. Cheng, B. Huang, P. Wang, Z. Wang, Z. Lou, J. Wang, X. Qin, X. Zhang, Y. Dai, In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem. Commun. 47, 7054–7056 (2011)CrossRefGoogle Scholar
  8. 8.
    D. Zhang, M. Wen, B. Jiang, G. Li, J.C. Yu, Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment. J. Hazard. Mater. 211–212, 104–111 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Appl. Mater. Inter. 8, 27661–27668 (2016)CrossRefGoogle Scholar
  10. 10.
    L. Ye, C. Han, Z. Ma, Y. Leng, J. Li, X. Ji, D. Bi, H. Xie, Z. Huang, Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light. Chem. Eng. J. 307, 311–318 (2017)CrossRefGoogle Scholar
  11. 11.
    Y. Lei, G. Wang, P. Guo, H. Song, The Ag-BiOBrxI1-x composite photocatalyst: preparation, characterization and their novel pollutants removal property. Appl. Surf. Sci. 279, 374–379 (2013)CrossRefGoogle Scholar
  12. 12.
    Q. Zhao, X. Liu, Y. Xing, Z. Liu, C. Du, Synthesizing Bi2O3/BiOCl heterojunctions by partial conversion of BiOCl. J. Mater. Sci. 52, 2117–2130 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties. Catal. Commun. 13, 63–68 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Bai, X. Shi, P.Q. Wang, H. Xie, L. Ye, Photocatalytic mechanism regulation of bismuth oxyhalogen via changing atomic assembly method. ACS Appl. Mater. Interfaces 9, 30273–30277 (2017)CrossRefGoogle Scholar
  15. 15.
    X. Shi, P. Wang, L. Wang, Y. Bai, H. Xie, Y. Zhou, L. Ye, Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO3- adsorption. Appl. Catal. B 243, 322–329 (2019)CrossRefGoogle Scholar
  16. 16.
    Y. Bai, X. Shi, P. Wang, L. Wnag, K. Zhang, Y. Zhou, H. Xie, J. Wang, L. Ye, BiOBrxI1−x/BiOBr heterostructure engineering for efficient molecular oxygen activation. Chem. Eng. J. 365, 34–42 (2019)CrossRefGoogle Scholar
  17. 17.
    V. Vaiano, M. Matarangolo, J. Murcia, H. Rojas, J. Navío, M. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl. Catal. B 225, 197–206 (2018)CrossRefGoogle Scholar
  18. 18.
    R. Wang, D. Ren, S. Xia, Y. Zhang, J. Zhao, Photocatalytic degradation of bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J. Hazard. Mater. 169, 926–932 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Ali, A. Belaidi, S. Ali, M. Helal, K. Mahmoud, Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique. J. Mater. Sci.: Mater. Electron. 27, 5440–5445 (2016)Google Scholar
  20. 20.
    C. Shi, M. Beidaghi, M. Naguib, O. Mashtalir, Y. Gogotsi, S. Billinge, Structure of nanocrystalline Ti3C2 MXene using atomic pair distribution function. Phys. Rev. Lett. 29, 1211–1215 (2014)Google Scholar
  21. 21.
    T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo, T. Qiu, J. Yang, Synthesis of two-dimensional Ti3C2 MXene using HCl + LiF etchant: enhanced exfoliation and delamination. J. Alloys Compd. 695, 818–826 (2016)CrossRefGoogle Scholar
  22. 22.
    K. Rasool, M. Helal, A. Ali, C. Ren, Y. Gogotsi, K. Mahmoud, Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10, 3674–3684 (2016)CrossRefGoogle Scholar
  23. 23.
    X. An, W. Wang, J. Wang, H. Duan, J. Shi, X. Yu, The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 20, 11405–11411 (2018)CrossRefGoogle Scholar
  24. 24.
    Y. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao, Y. Dall Agnese, G. Chen, X. Wang, g-C3N4/Ti3C2 MXene composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 6, 9124–9131 (2018)CrossRefGoogle Scholar
  25. 25.
    C. Liu, Q. Xu, Q. Zhang, Y. Zhu, M. Ji, Z. Tong, W. Hou, Y. Zhang, J. Xu, Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. J. Mater. Sci. 54, 2458–2471 (2019)CrossRefGoogle Scholar
  26. 26.
    X. Guo, X. Xie, S. Choi, Y. Zhao, G. Wang, Sb2O3/MXene(Ti3C2) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 5, 12445–12452 (2017)CrossRefGoogle Scholar
  27. 27.
    H. Liu, Y. Su, Z. Chen, Z. Jin, Y. Wang, Graphene sheets grafted three-dimensional BiOBr0.2I0.8 microspheres with excellent photocatalytic activity under visible light. J. Hazard. Mater. 266, 75–83 (2014)CrossRefGoogle Scholar
  28. 28.
    L. Sun, L. Xiang, X. Zhao, C. Jia, J. Yang, Z. Jin, X. Cheng, W. Fan, Enhanced visible-light photocatalytic activity of BiOI/BiOCl heterojunctions: key role of crystal facet combination. ACS Catal. 5, 3540–3551 (2015)CrossRefGoogle Scholar
  29. 29.
    Y. Wu, H. Wang, W. Tu, Y. Liu, Y. Tan, X. Yuan, J. Chew, Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. J. Hazard. Mater. 347, 412–422 (2018)CrossRefGoogle Scholar
  30. 30.
    L. Ye, X. Jin, C. Liu, C. Ding, H. Xie, K.H. Chu, P. Wong, Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl. Catal. B 187, 281–290 (2016)CrossRefGoogle Scholar
  31. 31.
    L. Ye, W. Hui, X. Jin, Y. Su, D. Wang, H. Xie, X. Liu, X. Liu, Synthesis of olive-green few-layered BiOI for efficient photoreduction of CO2 into solar fuels under visible/near-infrared light. Sol. Energy Mater. Sol. Cells 144, 732–739 (2016)CrossRefGoogle Scholar
  32. 32.
    A. Moya, A. Cherevan, S. Marchesan, P. Gebhardt, M. Prato, D. Eder, J. Vilatela, Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Appl. Catal. B 179, 574–582 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Ou, D. Fan, Z. Wei, Z. Wu, Efficient visible light photocatalytic oxidation of NO in air with band-gap tailored (BiO)2CO3-BiOI solid solutions. Chem. Eng. J. 255, 650–658 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017)CrossRefGoogle Scholar
  35. 35.
    H. Li, J. Shang, H. Zhu, Z. Yang, Z. Ai, L. Zhang, Oxygen vacancy structure associated photocatalytic water oxidation of BiOCl. ACS Catal. 6, 8276–8285 (2016)CrossRefGoogle Scholar
  36. 36.
    H. Wang, D. Yong, S. Chen, S. Jiang, X. Zhang, W. Shao, Q. Zhang, W. Yan, B. Pan, Y. Xie, Oxygen vacancy mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc. 14, 1760–1766 (2018)CrossRefGoogle Scholar
  37. 37.
    S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 21, 1800136 (2018)CrossRefGoogle Scholar
  38. 38.
    C. Jing, B. Xu, H. Lin, B. Luo, S. Chen, Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal. Chem. Eng. J. 185–186, 91–99 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xian Shi
    • 1
  • Pingquan Wang
    • 1
    Email author
  • Lan Lan
    • 1
  • Shenglong Jia
    • 2
  • Ziyu Wei
    • 2
  1. 1.School of Oil & Natural Gas EngineeringSouthwest Petroleum UniversityChengduChina
  2. 2.Qinghai Oilfield Branch of PetroChinaDunhuangChina

Personalised recommendations