Advertisement

Enhanced photoresponse characteristics of ZnO polymer nanocomposite: effect of variation of surface density of nanocrystals

  • Karunakar Sahoo
  • Biswajyoti Mohanty
  • Jhasaketan NayakEmail author
Article
  • 27 Downloads

Abstract

Zinc oxide (40–100 nm size) nanocrystals were successfully grown on the surface of an organic polymer (cellulose) by a low-cost solution casting method. Zinc precursor (zinc nitrate hexahydrate) concentration was varied from 25–75 mM, to synthesize several sets of ZnO-cellulose nanocomposite (ZCNC). The morphology and size of the nanocrystals were studied by a field emission scanning electron microscope and due to variation in the precursor concentration, a significant change in the surface density of the nanocrystals was observed. The maximum surface density was perceived at a precursor concentration of 50 mM. The Brunauer–Emmett–Teller (BET) surface areas of the ZCNCs were estimated by the nitrogen adsorption–desorption method, and a maximum surface area of 2.861 m2/g was observed. The structure, as well as composition of the nanocomposite, were studied by X-ray diffraction and energy dispersive X-rays analysis, respectively. The electrical properties of the composite were studied by current–voltage measurement while the photoresponse was recorded by time resolve photocurrent measurement. The photocurrent of the ZCNC sensor device increased from 6.783 × 10−8 to 4.91 × 10−6 A under UV illumination. The UV response (IUV/IDark) and sensitivity of the device were 72.38 and 7138, respectively. Also, the photocurrent rise time and decay time were 8 s and 9 s, respectively. The enhanced photoresponse with short response time observed for the ZnO-cellulose nanocomposite may lead to the fabrication of inexpensive ultraviolet sensors.

Notes

Acknowledgements

We wish to acknowledge IIT (ISM), Dhanbad for research facilities and financial support. The authors also thank Amrita Biswas for assistance with current–time (I–t) measurement.

References

  1. 1.
    L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang, X. Fang, Adv. Mater. 24, 2305 (2012)CrossRefGoogle Scholar
  2. 2.
    Z. Zou, C. Xie, S. Zhang, C. Yang, G. Zhang, L. Yang, Sens. Actuators B 188, 1158 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Di Mauro, M. Cantarella, G. Nicotra, G. Pellegrino, A. Gulino, M.V. Brundo, V. Privitera, G. Impellizzeri, Sci. Rep. 7, 1 (2017)CrossRefGoogle Scholar
  4. 4.
    N. Justh, G.J. Mikula, L.P. Bakos, B. Nagy, K. László, B. Parditka, Z. Erdélyi, V. Takáts, J. Mizsei, I.M. Szilágyi, Carbon N. Y. 147, 476 (2019)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, ACS Nano 6, 9777 (2012)CrossRefGoogle Scholar
  6. 6.
    B. Li, Y. Wang, Superlattices Microstruct. 47, 615 (2010)CrossRefGoogle Scholar
  7. 7.
    H.C. Chen, S.W. Lin, J.M. Jiang, Y.W. Su, K.H. Wei, A.C.S. Appl, Mater. Interfaces 7, 6273 (2015)CrossRefGoogle Scholar
  8. 8.
    R. Sharma, F. Alam, A.K. Sharma, V. Dutta, S.K. Dhawan, J. Mater. Chem. C 2, 8142 (2014)CrossRefGoogle Scholar
  9. 9.
    B. Wang, J. Liu, Q. Sun, B. Xiao, R. Li, T.K. Sham, X. Sun, Adv. Mater. Interfaces 3, 1600369 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Arjomandi, N.K.I. Mossa, B. Jaleh, J. Appl. Polym. Sci. 132, 1 (2015)CrossRefGoogle Scholar
  11. 11.
    G. Gonçalves, P.A.A.P. Marques, C.P. Neto, T. Trindade, M. Peres, T. Monteiro, Cryst. Growth Des. 9, 386 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Ali, S. Ambreen, Q. Maqbool, S. Naz, M.F. Shams, M. Ahmad, A.R. Phull, M. Zia, J. Phys. Chem. Solids 98, 174 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Zhang, L. Li, Y. Li, C. Yang, Chem. Eng. J. 313, 1132 (2017)CrossRefGoogle Scholar
  14. 14.
    Z. Li, C. Yao, F. Wang, Z. Cai, X. Wang, Nanotechnology 25, 504005 (2014)CrossRefGoogle Scholar
  15. 15.
    Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, R. Adelung, A.C.S. Appl, Mater. Interfaces 7, 14303 (2015)CrossRefGoogle Scholar
  16. 16.
    M.A. Ibrahem, E. Verrelli, K.T. Lai, G. Kyriakou, A.F. Lee, M.A. Isaacs, F. Cheng, M. O’Neill, A.C.S. Appl, Mater. Interfaces 9, 36971 (2017)CrossRefGoogle Scholar
  17. 17.
    Q. Liu, M. Gong, B. Cook, D. Ewing, M. Casper, A. Stramel, J. Wu, Adv. Mater. Interfaces 4, 1601064 (2017)CrossRefGoogle Scholar
  18. 18.
    N.K. Hassan, M.R. Hashim, N.K. Allam, Sens. Actuators B 192, 124 (2013)CrossRefGoogle Scholar
  19. 19.
    D.Y. Son, J.H. Im, H.S. Kim, N.G. Park, J. Phys. Chem. C 118, 16567 (2014)CrossRefGoogle Scholar
  20. 20.
    S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666 (2011)CrossRefGoogle Scholar
  21. 21.
    O. Lupan, T. Pauporté, B. Viana, P. Aschehoug, Electrochim. Acta 56, 10543 (2011)CrossRefGoogle Scholar
  22. 22.
    R. Sankar Ganesh, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Sens. Actuators B 255, 672 (2018)CrossRefGoogle Scholar
  23. 23.
    K. Suematsu, K. Watanabe, A. Tou, Y. Sun, K. Shimanoe, Anal. Chem. 90, 1959 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Hatamie, A. Khan, M. Golabi, A.P.F. Turner, V. Beni, W.C. Mak, A. Sadollahkhani, H. Alnoor, B. Zargar, S. Bano, O. Nur, M. Willander, Langmuir 31, 10913 (2015)CrossRefGoogle Scholar
  25. 25.
    A.S. Dahiya, C. Opoku, R.A. Sporea, B. Sarvankumar, G. Poulin-Vittrant, F. Cayrel, N. Camara, D. Alquier, Sci. Rep. 6, 2 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Li, J. Gong, Y. Deng, Sens. Actuators B 158, 176 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Thepnurat, T. Chairuangsri, N. Hongsith, P. Ruankham, S. Choopun, A.C.S. Appl, Mater. Interfaces 7, 24177 (2015)CrossRefGoogle Scholar
  28. 28.
    S.-P. Chang, K.-J. Chen, J. Nanomater. 2012, 1 (2012)Google Scholar
  29. 29.
    S.I. Inamdar, V.V. Ganbavle, K.Y. Rajpure, Superlattices Microstruct. 76, 253 (2014)CrossRefGoogle Scholar
  30. 30.
    O. Lupan, V. Postica, J. Gröttrup, A.K. Mishra, N.H. de Leeuw, R. Adelung, Sens. Actuators B 245, 448 (2017)CrossRefGoogle Scholar
  31. 31.
    C.C. Chuang, A. Prasannan, B.R. Huang, P. Da Hong, M.Y. Chiang, A.C.S. Sustain, Chem. Eng. 5, 4002 (2017)Google Scholar
  32. 32.
    J. Saghaei, A. Fallahzadeh, T. Saghaei, Sens. Actuators B 247, 150 (2016)CrossRefGoogle Scholar
  33. 33.
    S.V. Mohite, K.Y. Rajpure, Opt. Mater. 36, 833 (2014)CrossRefGoogle Scholar
  34. 34.
    D. Kathiravan, B.-R. Huang, A. Saravanan, J. Mater. Chem. C 5, 5239 (2017)CrossRefGoogle Scholar
  35. 35.
    K.K. Sadasivuni, D. Ponnamma, H.U. Ko, H.C. Kim, L. Zhai, J. Kim, Sens. Actuators B 233, 633 (2016)CrossRefGoogle Scholar
  36. 36.
    H. Gullapalli, V.S.M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, P.M. Ajayan, Small 6, 1641 (2010)CrossRefGoogle Scholar
  37. 37.
    S. Mun, H.C. Kim, H.U. Ko, L. Zhai, J.W. Kim, J. Kim, Sci. Technol. Adv. Mater. 18, 437 (2017)CrossRefGoogle Scholar
  38. 38.
    A. Pimentel, A. Samouco, D. Nunes, A. Araujo, R. Martins, E. Fortunato, Materials 10, 1308 (2017)CrossRefGoogle Scholar
  39. 39.
    A.J. Gimenez, J.M. Yanez-Limon, J.M. Seminario, J. Phys. Chem. C 115, 282 (2011)CrossRefGoogle Scholar
  40. 40.
    A.J. Gimenez, J.M. Yanez-Limon, J.M. Seminario, IEEE Sens. J. 13, 1301 (2013)CrossRefGoogle Scholar
  41. 41.
    K. Lefatshe, C.M. Muiva, L.P. Kebaabetswe, Carbohydr. Polym. 164, 301 (2017)CrossRefGoogle Scholar
  42. 42.
    I.C. Yao, T.Y. Tseng, P. Lin, Sens. Actuators A 178, 26 (2012)CrossRefGoogle Scholar
  43. 43.
    N. Sangiorgi, L. Aversa, R. Tatti, R. Verucchi, A. Sanson, Opt. Mater. 64, 18 (2017)CrossRefGoogle Scholar
  44. 44.
    R. Köferstein, L. Jäger, S.G. Ebbinghaus, Solid State Ionics 249–250, 1 (2013)CrossRefGoogle Scholar
  45. 45.
    F.H. Alsultany, Z. Hassan, N.M. Ahmed, Opt. Mater. 60, 30 (2016)CrossRefGoogle Scholar
  46. 46.
    F.H. Alsultany, Z. Hassan, N.M. Ahmed, N.G. Elafadill, H.R. Abd, Opt. Laser Technol. 98, 344 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Oxide Semiconductor Laboratory, Department of PhysicsIndian Institute of Technology (ISM)DhanbadIndia

Personalised recommendations