Advertisement

Low power consumption UV sensor based on n-ZnO/p-Si junctions

  • Naif H. Al-HardanEmail author
  • Mohd Marzaini Mohd Rashid
  • Azlan Abdul Aziz
  • Naser M. Ahmed
Article
  • 29 Downloads

Abstract

We report on the manufacture of low power consumption UV sensor based on n-ZnO/p-Si Junction. The ZnO thin film was prepared through RF sputtering process. The X-ray diffraction analysis and scanning electron microscopy reveal that the prepared ZnO films exhibit single diffraction peak at a Bragg angle of approximately 34.28° with a homogeneous distribution of nanosized structures. The pn junction exhibit good rectifying behaviour with rectifying ratio of approximately 800 at ± 2 V. At zero bias voltage, the prepared UV photodiode shows the highest photo-to-dark current ratio with a stable dynamic behaviour under the illumination of 360 nm UV light. The prepared UV photodiode show dual polarity behaviour with different proposed sensing mechanisms.

Notes

Acknowledgements

The authors would like to thank the School of Physics at USM for supporting this research and providing the appropriate research environment. Our gratitude also goes to the RCMO-USM, for supporting us with the bridging grant (304.PFIZIK.6316276).

References

  1. 1.
    J. Zhong, Y. Lu, ZnO-based ultraviolet detectors, in Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, ed. by C.W. Litton, T.C. Collins, D.C. Reynolds, P. Capper, S. Kasap, A. Willoughby (Wiley, Hoboken, 2011)Google Scholar
  2. 2.
    N.H. Al-Hardan, A. Jalar, M.A. Abdul Hamid, L.K. Keng, N.M. Ahmed, R. Shamsudin, A wide-band UV photodiode based on n-ZnO/p-Si heterojunctions. Sens. Actuators A 207, 61–66 (2014)CrossRefGoogle Scholar
  3. 3.
    N.A. Hammed, A. Abdul Aziz, A.I. Usman, M.A. Qaeed, The sonochemical synthesis of vertically aligned ZnO nanorods and their UV photodetection properties: effect of ZnO buffer layer. Ultrason. Sonochem. 50, 172–181 (2019)CrossRefGoogle Scholar
  4. 4.
    X. Chen, W. Rhee, Z. Wang, Low power sensor design for IoT and mobile healthcare applications. China Commun. 12, 42–54 (2015)CrossRefGoogle Scholar
  5. 5.
    F. Wu, J. Redouté, M.R. Yuce, WE-Safe: a self-powered wearable iot sensor network for safety applications based on LoRa. IEEE Access 6, 40846–40853 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Chen, K. Liu, L. Hu, A.A. Al-Ghamdi, X. Fang, New concept ultraviolet photodetectors. Mater. Today 18, 493–502 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Lokesh, G. Kavitha, E. Manikandan, G.K. Mani, K. Kaviyarasu, J.B.B. Rayappan et al., Effective ammonia detection using n-ZnO/p–niO heterostructured nanofibers. IEEE Sens. J. 16, 2477–2483 (2016)CrossRefGoogle Scholar
  8. 8.
    Y. Luo, B. Yin, H. Zhang, Y. Qiu, J. Lei, Y. Chang et al., Fabrication of p–niO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes. J. Mater. Sci.: Mater. Electron. 27, 2342–2348 (2016)Google Scholar
  9. 9.
    R. Pietruszka, G. Luka, B.S. Witkowski, K. Kopalko, E. Zielony, P. Bieganski et al., Electrical and photovoltaic properties of ZnO/Si heterostructures with ZnO films grown by atomic layer deposition. Thin Solid Films 563, 28–31 (2014)CrossRefGoogle Scholar
  10. 10.
    Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16, R829–R858 (2004)Google Scholar
  11. 11.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 41103–41301 (2005)CrossRefGoogle Scholar
  12. 12.
    L. Znaidi, Sol–gel-deposited ZnO thin films: a review. Mater. Sci. Eng. B 174, 18–30 (2010)CrossRefGoogle Scholar
  13. 13.
    Y.S. Ocak, Electrical characterization of DC sputtered ZnO/p-Si heterojunction. J. Alloys Compds. 513, 130–134 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Chand, R. Kumar, Electrical characterization of Ni/n-ZnO/p-Si/Al heterostructure fabricated by pulsed laser deposition technique. J. Alloys Compds. 613, 395–400 (2014)CrossRefGoogle Scholar
  15. 15.
    Y.I. Alivov, U. Ozgur, S. Dogan, D. Johnstone, V. Avrutin, N. Onojima et al., Photoresponse of n-ZnO/p-SiC heterojunction diodes grown by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 86, 241103–241108 (2005)CrossRefGoogle Scholar
  16. 16.
    Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev et al., Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 83, 4719–4721 (2003)CrossRefGoogle Scholar
  17. 17.
    K. Liu, M. Sakurai, M. Aono, ZnO-based ultraviolet photodetectors. Sensors 10, 8604–8634 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Kaya, E. Yilmaz, Effects of interfacial layer on the electrical properties of n-ZnO/p-Si heterojunction diodes between 260 and 340 K. J. Mater. Sci.: Mater. Electron. 30, 12170 (2019)Google Scholar
  19. 19.
    S. Chirakkara, S.B. Krupanidhi, Study of n-ZnO/p-Si (100) thin film heterojunctions by pulsed laser deposition without buffer layer. Thin Solid Films 520, 5894–5899 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Chabane, N. Zebbar, M. Trari, M. Kechouane, Opto-capacitive study of n-ZnO/p-Si heterojunctions elaborated by reactive sputtering method: solar cell applications. Thin Solid Films 636, 419–424 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Zhao, L. Hu, Z. Wang, Z. Wang, H. Zhang, Y. Zhao et al., Epitaxial growth of ZnO thin films on Si substrates by PLD technique. J. Crystal Growth 280, 455–461 (2005)CrossRefGoogle Scholar
  22. 22.
    Ş. Kaya, Effect of annealing temperature on structural, electrical, and UV sensing characteristics of n-ZnO/p-Si heterojunction photodiodes. Turk. J. Phys. 43, 9 (2019)CrossRefGoogle Scholar
  23. 23.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2006)CrossRefGoogle Scholar
  24. 24.
    L.J. Mandalapu, F.X. Xiu, Z. Yang, D.T. Zhao, J.L. Liu, p-type behavior from Sb-doped ZnO heterojunction photodiodes. Appl. Phys. Lett. 88, 112108 (2006)CrossRefGoogle Scholar
  25. 25.
    Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, B. Li, Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction. Appl. Phys. Lett. 93, 163501 (2008)CrossRefGoogle Scholar
  26. 26.
    L. Zhang, Q. Li, L. Shang, Z. Zhang, R. Huang, F. Zhao, Electroluminescence from n-ZnO : Ga/p-GaN heterojunction light-emitting diodes with different interfacial layers. J. Phys. D 45, 485103 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Semple, S. Rossbauer, T.D. Anthopoulos, Analysis of Schottky contact formation in coplanar Au/ZnO/Al nanogap radio frequency diodes processed from solution at low temperature. ACS Appl. Mater. Interfaces. 8, 23167–23174 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Ilican, K. Gorgun, S. Aksoy, Y. Caglar, M. Caglar, Fabrication of p-Si/n-ZnO: Al heterojunction diode and determination of electrical parameters. J. Mol. Struct. 1156, 675–683 (2018)CrossRefGoogle Scholar
  29. 29.
    J.-H. Choi, S.N. Das, K.-J. Moon, J.P. Kar, J.-M. Myoung, Fabrication and characterization of p-Si nanowires/ZnO film heterojunction diode. Solid-State Electron. 54, 1582–1585 (2010)CrossRefGoogle Scholar
  30. 30.
    J.D. Ye, S.L. Gu, S.M. Zhu, W. Liu, S.M. Liu, R. Zhang et al., Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions. Appl. Phys. Lett. 88, 182112–182113 (2006)CrossRefGoogle Scholar
  31. 31.
    R. Ghosh, D. Basak, Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction. Appl. Phys. Lett. 90, 243106–243108 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Panigrahi, D. Basak, Recombination-tunneling conduction in Cu- and S-doped ZnO nanorods’ core–shell junction: dependence of diode parameters on thermal annealing temperature and role of interfacial defects. J. Nanopart. Res. 16, 2184 (2013)CrossRefGoogle Scholar
  33. 33.
    T. Zhang, L. Li, J.-P. Ao, Temperature-dependent electrical transport characteristics of a NiO/GaN heterojunction diode. Surf. Interfaces 5, 15 (2016)CrossRefGoogle Scholar
  34. 34.
    D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, Hoboken, 2015)Google Scholar
  35. 35.
    E.F. Keskenler, M. Tomakin, S. Doğan, G. Turgut, S. Aydın, S. Duman et al., Growth and characterization of Ag/n-ZnO/p-Si/Al heterojunction diode by sol–gel spin technique. J. Alloy. Compd. 550, 129–132 (2013)CrossRefGoogle Scholar
  36. 36.
    S.K. Singh, P. Hazra, Performance of RF sputtered p-Si/n-ZnO nanoparticle thin film heterojunction diodes in high temperature environment. Appl. Surf. Sci. 400, 206–211 (2017)CrossRefGoogle Scholar
  37. 37.
    F. Chaabouni, M. Abaab, B. Rezig, Characterization of n-ZnO/p-Si films grown by magnetron sputtering. Superlattices Microstruct. 39, 171–178 (2006)CrossRefGoogle Scholar
  38. 38.
    P. Klason, M.M. Rahman, Q.H. Hu, O. Nur, R. Turan, M. Willander, Fabrication and characterization of p-Si/n-ZnO heterostructured junctions. Microelectron. J. 40, 706–710 (2009)CrossRefGoogle Scholar
  39. 39.
    N. Baydogan, O. Karacasu, H. Cimenoglu, Effect of annealing temperature on ZnO:Al/p-Si heterojunctions. Thin Solid Films 520, 5790–5796 (2012)CrossRefGoogle Scholar
  40. 40.
    S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)CrossRefGoogle Scholar
  41. 41.
    I.S. Jeong, J.H. Kim, S. Im, Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure. Appl. Phys. Lett. 83, 2946–2948 (2003)CrossRefGoogle Scholar
  42. 42.
    C. Periasamy, P. Chakrabarti, Large-area and nanoscale n-ZnO/p-Si heterojunction photodetectors. J. Vac. Sci. Technol. B 29, 051206 (2011)CrossRefGoogle Scholar
  43. 43.
    L. Luo, Y. Zhang, S.S. Mao, L. Lin, Fabrication and characterization of ZnO nanowires based UV photodiodes. Sens. Actuators A 127, 201–206 (2006)CrossRefGoogle Scholar
  44. 44.
    S.G. Cho, D.U. Lee, E.K. Kim, Photoresponse of n-ZnO/p-Si photodiodes to violet-green bandwidth light caused by defect states. Thin Solid Films 545, 517–520 (2013)CrossRefGoogle Scholar
  45. 45.
    H. Zhu, C.X. Shan, B. Yao, B.H. Li, J.Y. Zhang, D.X. Zhao et al., High spectrum selectivity ultraviolet photodetector fabricated from an n-ZnO/p-GaN heterojunction. J. Phys. Chem. C 112, 20546–20548 (2008)CrossRefGoogle Scholar
  46. 46.
    P–.N. Ni, C.-X. Shan, S.-P. Wang, X.-Y. Liu, D.-Z. Shen, Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p–niO core–shell nanowire arrays. J. Mater. Chem. C 1, 4445–4449 (2013)CrossRefGoogle Scholar
  47. 47.
    L. Qin, D. Shao, C. Shing, S. Sawyer, Wavelength selective p-GaN/ZnO colloidal nanoparticle heterojunction photodiode. Appl. Phys. Lett. 102, 071106 (2013)CrossRefGoogle Scholar
  48. 48.
    Y. Ning, Z. Zhang, F. Teng, X. Fang, Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 14, 1703754 (2018)CrossRefGoogle Scholar
  49. 49.
    C. Wei, J. Xu, S. Shi, R. Cao, J. Chen, H. Dong et al., Self-powered visible-blind UV photodetectors based on p–niO nanoflakes/n-ZnO nanorod arrays with an MgO interfacial layer. J. Mater. Chem. C 7, 9369–9379 (2019)CrossRefGoogle Scholar
  50. 50.
    N.H. Al-Hardan, M.A.A. Hamid, N.M. Ahmed, A. Jalar, R. Shamsudin, N.K. Othman et al., A study on the UV photoresponse of hydrothermally grown zinc oxide nanorods with different aspect ratios. IEEE Sens. J. 15, 6811–6818 (2015)CrossRefGoogle Scholar
  51. 51.
    D. Zhang, S. Nozaki, K. Uchida, NiO/Si heterostructures formed by UV oxidation of nickel deposited on Si substrates. J. Vac. Sci. Technol. B 32, 031202 (2014)CrossRefGoogle Scholar
  52. 52.
    L. Wang, L. Chang, X. Yin, L. You, J.-L. Zhao, H. Guo et al., Self-powered sensitive and stable UV-visible photodetector based on GdNiO3/Nb-doped SrTiO3 heterojunctions. Appl. Phys. Lett. 110, 043504 (2017)CrossRefGoogle Scholar
  53. 53.
    X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li et al., High detectivity graphene-silicon heterojunction photodetector. Small 12, 595–601 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsUniversiti Sains Malaysia (USM)PenangMalaysia

Personalised recommendations