Advertisement

Photoluminescence properties of near ultraviolet excited Ca8La2(PO4)6O2:Sm3+ red orange phosphor

  • Renping CaoEmail author
  • Longxiang Xu
  • Xinyan Lv
  • Xuantian Wang
  • Ting Chen
  • Pan Liu
  • Ting Fan
Article
  • 6 Downloads

Abstract

Novel Ca8La2(PO4)6O2:Sm3+ phosphors are successfully synthesized in air by the high temperature solid state reaction method. The X-ray diffraction patterns, morphology, energy spectrum diagram, elemental mapping, luminescence properties, concentration-dependent emission spectra, thermal stability, and decay curves are investigated. The excitation spectrum of Ca8La2(PO4)6O2:8%Sm3+ phosphor monitored at 604 nm extends the region from 220 nm to 520 nm with many excitation spectral bands because of the O2−–Sm3+ charge transfer band and the ff transitions of Sm3+ ion. Ca8La2(PO4)6O2:Sm3+ phosphor with excitation at 402 nm emits red orange light in the range of 550–770 nm with many emission spectral bands derived from the 4G5/2 → 6H5/2 (550–570 nm), 4G5/2 → 6H7/2 (570–630 nm), 4G5/2 → 6H9/2 (630–690 nm), and 4G5/2 → 6H11/2 (690–760 nm) transitions of Sm3+ ion, and the optimal Sm3+ concentration is ~ 8 mol%. The lifetime of Ca8La2(PO4)6O2:Sm3+ phosphor decreases from 1.39 to 1.11 ms with increasing Sm3+ concentration from 2 to 12 mol%. Ca8La2(PO4)6O2:Sm3+ phosphor has the good thermal stability and emission color stability. The luminous mechanism, concentration quenching, and thermal quenching are explained, respectively. The experimental results indicate that Ca8La2(PO4)6O2:Sm3+ phosphor as red orange component has a potential application in white LED based on near ultraviolet LED chip.

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51862015 and 51702051), Foundation of Jiang’xi Educational Committee (No. GJJ180564), Natural Science Foundation of Guangdong province (No. 2017A030313307), and National Undergraduate Training Program for Innovation and Entrepreneurship of China (No. 201910419014).

References

  1. 1.
    Z. Zhang, C. Ma, R. Gautier, M.S. Molokeev, Q. Liu, Z. Xia, Adv. Funct. Mater. 28(41), 1804150 (2018)CrossRefGoogle Scholar
  2. 2.
    J. Xiang, J. Zheng, Z. Zhou, H. Suo, X. Zhao, X. Zhou et al., Chem. Eng. J. 356, 236–244 (2019)CrossRefGoogle Scholar
  3. 3.
    R. Cao, X. Wang, Y. Jiao, X. Ouyang, S. Guo, P. Liu et al., J. Lumin. 212, 23–28 (2019)CrossRefGoogle Scholar
  4. 4.
    T. Sakthivel, G. Annadurai, R. Vijayakumar, X. Huang, J. Lumin. 205, 129–135 (2019)CrossRefGoogle Scholar
  5. 5.
    W. Xiao, X. Liu, J. Zhang, J. Qiu, Adv. Opt. Mater. 7, 1801677 (2019)CrossRefGoogle Scholar
  6. 6.
    Q. Wang, J. Liao, H. Huang, H. Wen, J. Alloys Compd. 772, 499–506 (2019)CrossRefGoogle Scholar
  7. 7.
    C. Liao, R. Cao, W. Wang, W. Hu, G. Zheng, Z. Luo, P. Liu, Mater. Res. Bull. 97, 490–496 (2018)CrossRefGoogle Scholar
  8. 8.
    R. Cao, G. Quan, Z. Shi, T. Chen, Z. Luo, G. Zheng, Z. Hu, J. Phys. Chem. Solids 118, 109–113 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Huang, H. Guo, Ceram. Int. 44, 10340–10344 (2018)CrossRefGoogle Scholar
  10. 10.
    B. Han, B. Liu, J. Zhang, Y. Dai, Optik 179, 346–350 (2019)CrossRefGoogle Scholar
  11. 11.
    A. Hooda, S.P. Khatkar, A. Khatkar, R.K. Malik, J. Dalal, S. Devi et al., Mater. Chem. Phys. 232, 39–48 (2019)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, J. Bin, L. Mei, Z. Huang, J. Lumin. 206, 645–648 (2019)CrossRefGoogle Scholar
  13. 13.
    J.C. Chang, C.T. Chen, M. Rudysh, M.G. Brik, M. Piasecki, W.R. Liu, J. Lumin. 206, 417–425 (2019)CrossRefGoogle Scholar
  14. 14.
    A. Yoshikawa, V.V. Kochurikhin, N. Futagawa, K. Shimamura, T. Fukuda, J. Cryst. Growth 204, 302–306 (1999)CrossRefGoogle Scholar
  15. 15.
    G. Zhu, Y. Shi, M. Mikami,Y. Shimomura, and Y. Wang, MRS Online Proceedings Library Archive, vol. 1592 (2014)Google Scholar
  16. 16.
    G. Boulon, A. Collombet, A. Brenier, M.-T. Cohen-Adad, A. Yoshikawa, K. Lebbou et al., Adv. Funct. Mater. 11(4), 263–270 (2001)CrossRefGoogle Scholar
  17. 17.
    M. Shang, G. Li, D. Geng, D. Yang, X. Kang, Y. Zhang et al., J. Phys. Chem. C 116, 10222–10231 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Fang, F. Liu, J. Hou, Y. Zhang, X. Zheng, N. Zhang et al., J. Lumin. 177, 280–285 (2016)CrossRefGoogle Scholar
  19. 19.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)CrossRefGoogle Scholar
  20. 20.
    R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  21. 21.
    A. Santra, K. Panigrahi, S. Saha, N. Mazumder, A. Ghosh, S. Bakuli et al., J. Mater. Sci. Mater. Electron. 30, 6311–6321 (2019)CrossRefGoogle Scholar
  22. 22.
    G. Fan, X. Wang, X. Qiu, D. Fan, R. Hu, Z. Tian, Opt. Mater. 91, 363–370 (2019)CrossRefGoogle Scholar
  23. 23.
    M. Dai, K. Qiu, P. Zhang, W. Zhang, J. Mater. Sci. Mater. Electron. 30, 9184–9193 (2019)CrossRefGoogle Scholar
  24. 24.
    X. Wu, J. Zheng, Q. Ren, W. Bai, Y. Ren, O. Hai, Polyhedron 164, 17–22 (2019)CrossRefGoogle Scholar
  25. 25.
    L. Li, X. Tang, Z. Jiang, X. Zhou, S. Jiang, X. Luo et al., J. Alloys Compd. 701, 515–523 (2017)CrossRefGoogle Scholar
  26. 26.
    B. Ramesh, G.R. Dillip, G. Rajasekhara Reddy, B. Deva Prasad Raju, S.W. Joo, N. John Sushma et al., Optik 156, 906–913 (2018)CrossRefGoogle Scholar
  27. 27.
    C. Chiang, H.H. Su, Y. Fang, S. Chu, Ceram. Int. 44, 6278–6284 (2018)CrossRefGoogle Scholar
  28. 28.
    J. Zhao, D. Zhao, Z. Ma, M. Ma, B. Liu, W. Guo et al., Displays 59, 16–20 (2019)CrossRefGoogle Scholar
  29. 29.
    G. Liu, B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, Berlin, 2005)Google Scholar
  30. 30.
    D. Dxter, J.H. Schulman, J. Chem. Phys. 22, 1063–1070 (1954)CrossRefGoogle Scholar
  31. 31.
    R. Cao, H. Xiao, F. Zhang, X. Cheng, L. Su, F. Xiao et al., J. Mater. Sci. Mater. Electron. 30, 2327–2333 (2019)CrossRefGoogle Scholar
  32. 32.
    F.B. Xiong, H. Chen, H.F. Lin, X.G. Meng, E. Ma, W.Z. Zhu, J. Lumin. 209, 89–94 (2019)CrossRefGoogle Scholar
  33. 33.
    P. Chen, W. Hu, D. Yang, J. Zhu, J. Zhang, Y. Wu, Physica B 530, 127–132 (2018)CrossRefGoogle Scholar
  34. 34.
    J. Li, R. Pang, Z. Yu, L. Liu, H. Wu, H. Li et al., J. Rare Earth. 36, 680–684 (2018)CrossRefGoogle Scholar
  35. 35.
    C.T. Chen, T.J. Lin, M.S. Molokeev, W.R. Liu, Dyes Pigments 150, 121–129 (2018)CrossRefGoogle Scholar
  36. 36.
    G. Zhu, Z. Li, F. Zhou, C. Wang, S. Xin, J. Lumin. 196, 32–35 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Renping Cao
    • 1
    Email author
  • Longxiang Xu
    • 1
  • Xinyan Lv
    • 1
  • Xuantian Wang
    • 1
  • Ting Chen
    • 1
  • Pan Liu
    • 1
  • Ting Fan
    • 2
  1. 1.College of Mathematics and PhysicsJinggangshan UniversityJi’anChina
  2. 2.School of Materials Science and Energy EngineeringFoshan UniversityFoshanChina

Personalised recommendations