Advertisement

A facile synthesized Eu-based metal–organic frameworks sensor for highly selective detection of volatile organic compounds

  • Li Feng
  • Chengli Dong
  • Wenlian Jiang
  • Xiaoling Gu
  • Mengjia Xiao
  • Chenxi Li
  • Zhanglei NingEmail author
  • Daojiang GaoEmail author
Article
  • 9 Downloads

Abstract

Hierarchically uniform three-dimensional europium-based metal–organic frameworks (Eu-MOFs) have been successfully fabricated via a facile and mild liquid precipitation method at room temperature. The morphology, structure, and composition of samples are well characterized by scanning electron microscopy, X-ray powder diffraction, fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analyses, respectively. These well-arranged Eu-MOFs architectures show red emission corresponding to the 5D0/7F2 transition of the Eu3+ ions under UV light excitation. Remarkably, these Eu-MOFs samples exhibit clear “turn-off” quenching response for styrene vapors with high selectivity and reusability. This Eu-MOFs fluorescent sensor realizes fast recognition for styrene with a response time of less than 1 min at room temperature. Moreover, good detection reproductivity could also be achieved in this sensor. Considering the easy preparation, high selectivity and excellent repeatability, the sensor system provides a convenient and reliable detection of volatile organic compound in everyday applications.

Notes

Acknowledgements

This work was financially supported by Sichuan Science and Technology Program (No. 2019YJ0525), the Project of Education Department of Sichuan Province (18ZA0408), and the Opening Laboratory Project of Sichuan Normal University (KFSY2018022).

References

  1. 1.
    Y. Zhang, S. Yuan, G. Day, X. Wang, X. Yang, H.C. Zhou, Coord. Chem. Rev. 354, 28–45 (2018)CrossRefGoogle Scholar
  2. 2.
    I. Lee, J.E. Kwon, Y. Kang, K.C. Kim, B.G. Kim, ACS Sens. 3, 1831–1837 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Zhou, B. Yan, Chem. Commun. 52, 2265–2268 (2016)CrossRefGoogle Scholar
  4. 4.
    C. Li, J. Huang, H. Zhu, L. Liu, Y. Feng, G. Hu, X. Yu, Sens. Actuators B 253, 275–282 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Ou, J. Zheng, R. Li, X. Huang, Z. Zhong, L. Zhong, H. Lin, Sci. Total Environ. 530–531, 393–402 (2015)CrossRefGoogle Scholar
  6. 6.
    X. Shen, B. Yan, J. Mater. Chem. C 3, 7038–7044 (2015)CrossRefGoogle Scholar
  7. 7.
    Q.Y. Cai, C.H. Mo, Q.T. Wu, A. Katsoyiannis, Q.Y. Zeng, Sci. Total Environ. 389, 209–224 (2008)CrossRefGoogle Scholar
  8. 8.
    Y. Wang, X. Du, Y. Long, X. Tang, Z. Chen, Y. Jiang, Sens. Actuators B 206, 252–257 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Tao, X. Wang, T. Sun, H. Cai, Y. Wang, T. Lin, D. Fu, L.L. Ting, Y. Gu, D. Zhao, Sci. Rep. 7, 41640 (2017)CrossRefGoogle Scholar
  10. 10.
    E. Gallego, F.J. Roca, J.F. Perales, G. Sanchez, P. Esplugas, Waste Manag. 32, 2469–2481 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Uchiyama, E. Matsushima, H. Tokunaga, Y. Otsubo, M. Ando, J. Chromatogr. A 1116, 165–171 (2006)CrossRefGoogle Scholar
  12. 12.
    N. Campillo, P. Viñas, I. López-Garcı́a, N. Aguinaga, M. Hernández-Córdoba, J. Chromatogr. A. 1035, 1–8 (2004)CrossRefGoogle Scholar
  13. 13.
    C.H. Wu, C.T. Feng, Y.S. Lo, T.Y. Lin, J.G. Lo, Chemosphere 56, 71–80 (2004)CrossRefGoogle Scholar
  14. 14.
    T. Endo, Y. Yanagida, T. Hatsuzawa, Sens. Actuators B 125, 589–595 (2007)CrossRefGoogle Scholar
  15. 15.
    M. Mihaylov, K. Chakarova, S. Andonova, N. Drenchev, E. Ivanova, E.A. Pidko, A. Sabetghadam, B. Seoane, J. Gascon, F. Kapteijn, K. Hadjiivanov, Chem. Commun. 52, 1494–1497 (2016)CrossRefGoogle Scholar
  16. 16.
    B. Li, H.M. Wen, H. Wang, H. Wu, T. Yildirim, W. Zhou, B. Chen, Energy Environ. Sci. 8, 2504–2511 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Lian, B. Yan, Inorg. Chem. 55, 11831–11838 (2016)CrossRefGoogle Scholar
  18. 18.
    T. Yang, L. Feng, B. Chen, L. Tang, J. Wang, Z. Ning, J. Bi, D. Gao, X. Lai, W. Li, Opt. Mater. 81, 64–70 (2018)CrossRefGoogle Scholar
  19. 19.
    J. Zhou, H. Li, H. Zhang, H. Li, W. Shi, P. Cheng, Adv. Mater. 27, 7072–7077 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Su, J. Yu, Y. Li, S.F.Z. Phua, G. Liu, W.Q. Lim, X. Yang, R. Ganguly, C. Dang, C. Yang, Y. Zhao, Commun. Chem. 1, 2 (2018)CrossRefGoogle Scholar
  21. 21.
    D.M. Chen, N.N. Zhang, C.S. Liu, M. Du, J. Mater. Chem. C 5, 2311–2317 (2017)CrossRefGoogle Scholar
  22. 22.
    K. Liu, H. You, G. Jia, Y. Zheng, Y. Song, M. Yang, Y. Huang, H. Zhang, Cryst. Growth Des. 9, 3519–3524 (2009)CrossRefGoogle Scholar
  23. 23.
    H. Guan, Y. Song, P. Ma, M. Chang, J. Chen, Y. Wang, B. Yuan, H. Zou, RSC Adv. 6, 53444–53453 (2016)CrossRefGoogle Scholar
  24. 24.
    O.M.M.M. da Costa, W.M. de Azevedo, J. Lumin. 170, 648–653 (2016)CrossRefGoogle Scholar
  25. 25.
    N. Sun, B. Yan, Sens. Actuators B 261, 153–160 (2018)CrossRefGoogle Scholar
  26. 26.
    H. Wang, Y. Li, Z. Ning, L. Huang, C. Zhong, C. Wang, M. Liu, X. Lai, D. Gao, J. Bi, J. Lumin. 201, 364–371 (2018)CrossRefGoogle Scholar
  27. 27.
    S.K. Jaganathan, A.J. Peter, V. Mahalingam, R. Krishnan, J. Mater. Sci. 30, 2037–2044 (2018)Google Scholar
  28. 28.
    Y. Chen, Y. Liang, M. Cai, T. Ke, M. Zhang, X. He, Q. Zeng, J. Mater. Sci. 29, 11930–11935 (2018)Google Scholar
  29. 29.
    J.N. Hao, B. Yan, Nanoscale 8, 2881–2886 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Materials ScienceSichuan Normal UniversityChengduChina

Personalised recommendations